summaryrefslogtreecommitdiff
path: root/python/cdec/sa/rulefactory.pxi
diff options
context:
space:
mode:
authorVictor Chahuneau <vchahune@cs.cmu.edu>2013-08-26 20:12:32 -0400
committerVictor Chahuneau <vchahune@cs.cmu.edu>2013-08-26 20:12:32 -0400
commit03799a2d330c6dbbe12154d4bcea236210b4f6ed (patch)
tree7adb0bc8dd2987fa32ee1299d8821dd8b7b06706 /python/cdec/sa/rulefactory.pxi
parent8b491e57f8a011f4f8496e44bed7eb7a4360bc93 (diff)
Improve the package structure of pycdec
This change should not break anything, but now you can run: python setup.py build_ext --inplace and use the cleaner: PYTHONPATH=/path/to/cdec/python python -m ...
Diffstat (limited to 'python/cdec/sa/rulefactory.pxi')
-rw-r--r--python/cdec/sa/rulefactory.pxi2224
1 files changed, 2224 insertions, 0 deletions
diff --git a/python/cdec/sa/rulefactory.pxi b/python/cdec/sa/rulefactory.pxi
new file mode 100644
index 00000000..10bb9737
--- /dev/null
+++ b/python/cdec/sa/rulefactory.pxi
@@ -0,0 +1,2224 @@
+# Implementation of the algorithms described in
+# Lopez, EMNLP-CoNLL 2007
+# Much faster than the Python numbers reported there.
+# Note to reader: this code is closer to C than Python
+import gc
+import itertools
+
+from libc.stdlib cimport malloc, realloc, free
+from libc.string cimport memset, memcpy
+from libc.math cimport fmod, ceil, floor, log
+
+from collections import defaultdict, Counter, namedtuple
+
+FeatureContext = namedtuple('FeatureContext',
+ ['fphrase',
+ 'ephrase',
+ 'paircount',
+ 'fcount',
+ 'fsample_count',
+ 'input_span',
+ 'matches',
+ 'input_match',
+ 'test_sentence',
+ 'f_text',
+ 'e_text',
+ 'meta',
+ 'online'
+ ])
+
+OnlineFeatureContext = namedtuple('OnlineFeatureContext',
+ ['fcount',
+ 'fsample_count',
+ 'paircount',
+ 'bilex_f',
+ 'bilex_e',
+ 'bilex_fe'
+ ])
+
+cdef int PRECOMPUTE = 0
+cdef int MERGE = 1
+cdef int BAEZA_YATES = 2
+
+# NOTE: was encoded as a non-terminal in the previous version
+cdef int EPSILON = sym_fromstring('*EPS*', True)
+
+cdef class TrieNode:
+ cdef public children
+
+ def __cinit__(self):
+ self.children = {}
+
+cdef class ExtendedTrieNode(TrieNode):
+ cdef public phrase
+ cdef public phrase_location
+ cdef public suffix_link
+
+ def __cinit__(self, phrase=None, phrase_location=None, suffix_link=None):
+ self.phrase = phrase
+ self.phrase_location = phrase_location
+ self.suffix_link = suffix_link
+
+
+cdef class TrieTable:
+ cdef public int extended
+ cdef public int count
+ cdef public root
+ def __cinit__(self, extended=False):
+ self.count = 0
+ self.extended = extended
+ if extended:
+ self.root = ExtendedTrieNode()
+ else:
+ self.root = TrieNode()
+
+# linked list structure for storing matches in BaselineRuleFactory
+cdef struct match_node:
+ int* match
+ match_node* next
+
+# encodes information needed to find a (hierarchical) phrase
+# in the text. If phrase is contiguous, that's just a range
+# in the suffix array; if discontiguous, it is the set of
+# actual locations (packed into an array)
+cdef class PhraseLocation:
+ cdef int sa_low
+ cdef int sa_high
+ cdef int arr_low
+ cdef int arr_high
+ cdef IntList arr
+ cdef int num_subpatterns
+
+ # returns true if sent_id is contained
+ cdef int contains(self, int sent_id):
+ return 1
+
+ def __cinit__(self, int sa_low=-1, int sa_high=-1, int arr_low=-1, int arr_high=-1,
+ arr=None, int num_subpatterns=1):
+ self.sa_low = sa_low
+ self.sa_high = sa_high
+ self.arr_low = arr_low
+ self.arr_high = arr_high
+ self.arr = arr
+ self.num_subpatterns = num_subpatterns
+
+
+cdef class Sampler:
+ '''A Sampler implements a logic for choosing
+ samples from a population range'''
+
+ cdef int sample_size
+ cdef IntList sa
+
+ def __cinit__(self, int sample_size, SuffixArray fsarray):
+ self.sample_size = sample_size
+ self.sa = fsarray.sa
+ if sample_size > 0:
+ logger.info("Sampling strategy: uniform, max sample size = %d", sample_size)
+ else:
+ logger.info("Sampling strategy: no sampling")
+
+ def sample(self, PhraseLocation phrase_location):
+ '''Returns a sample of the locations for
+ the phrase. If there are less than self.sample_size
+ locations, return all of them; otherwise, return
+ up to self.sample_size locations. In the latter case,
+ we choose to sample UNIFORMLY -- that is, the locations
+ are chosen at uniform intervals over the entire set, rather
+ than randomly. This makes the algorithm deterministic, which
+ is good for things like MERT'''
+ cdef IntList sample
+ cdef double i, stepsize
+ cdef int num_locations, val, j
+
+ sample = IntList()
+ if phrase_location.arr is None:
+ num_locations = phrase_location.sa_high - phrase_location.sa_low
+ if self.sample_size == -1 or num_locations <= self.sample_size:
+ sample._extend_arr(self.sa.arr + phrase_location.sa_low, num_locations)
+ else:
+ stepsize = float(num_locations)/float(self.sample_size)
+ i = phrase_location.sa_low
+ while i < phrase_location.sa_high and sample.len < self.sample_size:
+ '''Note: int(i) not guaranteed to have the desired
+ effect, according to the python documentation'''
+ if fmod(i,1.0) > 0.5:
+ val = int(ceil(i))
+ else:
+ val = int(floor(i))
+ sample._append(self.sa.arr[val])
+ i = i + stepsize
+ else:
+ num_locations = (phrase_location.arr_high - phrase_location.arr_low) / phrase_location.num_subpatterns
+ if self.sample_size == -1 or num_locations <= self.sample_size:
+ sample = phrase_location.arr
+ else:
+ stepsize = float(num_locations)/float(self.sample_size)
+ i = phrase_location.arr_low
+ while i < num_locations and sample.len < self.sample_size * phrase_location.num_subpatterns:
+ '''Note: int(i) not guaranteed to have the desired
+ effect, according to the python documentation'''
+ if fmod(i,1.0) > 0.5:
+ val = int(ceil(i))
+ else:
+ val = int(floor(i))
+ j = phrase_location.arr_low + (val*phrase_location.num_subpatterns)
+ sample._extend_arr(phrase_location.arr.arr + j, phrase_location.num_subpatterns)
+ i = i + stepsize
+ return sample
+
+
+# struct used to encapsulate a single matching
+cdef struct Matching:
+ int* arr
+ int start
+ int end
+ int sent_id
+ int size
+
+
+cdef void assign_matching(Matching* m, int* arr, int start, int step, int* sent_id_arr):
+ m.arr = arr
+ m.start = start
+ m.end = start + step
+ m.sent_id = sent_id_arr[arr[start]]
+ m.size = step
+
+
+cdef int* append_combined_matching(int* arr, Matching* loc1, Matching* loc2,
+ int offset_by_one, int num_subpatterns, int* result_len):
+ cdef int i, new_len
+
+ new_len = result_len[0] + num_subpatterns
+ arr = <int*> realloc(arr, new_len*sizeof(int))
+
+ for i from 0 <= i < loc1.size:
+ arr[result_len[0]+i] = loc1.arr[loc1.start+i]
+ if num_subpatterns > loc1.size:
+ arr[new_len-1] = loc2.arr[loc2.end-1]
+ result_len[0] = new_len
+ return arr
+
+
+cdef int* extend_arr(int* arr, int* arr_len, int* appendix, int appendix_len):
+ cdef int new_len
+
+ new_len = arr_len[0] + appendix_len
+ arr = <int*> realloc(arr, new_len*sizeof(int))
+ memcpy(arr+arr_len[0], appendix, appendix_len*sizeof(int))
+ arr_len[0] = new_len
+ return arr
+
+cdef int median(int low, int high, int step):
+ return low + (((high - low)/step)/2)*step
+
+
+cdef void find_comparable_matchings(int low, int high, int* arr, int step, int loc, int* loc_minus, int* loc_plus):
+ # Returns (minus, plus) indices for the portion of the array
+ # in which all matchings have the same first index as the one
+ # starting at loc
+ loc_plus[0] = loc + step
+ while loc_plus[0] < high and arr[loc_plus[0]] == arr[loc]:
+ loc_plus[0] = loc_plus[0] + step
+ loc_minus[0] = loc
+ while loc_minus[0]-step >= low and arr[loc_minus[0]-step] == arr[loc]:
+ loc_minus[0] = loc_minus[0] - step
+
+
+cdef class HieroCachingRuleFactory:
+ '''This RuleFactory implements a caching
+ method using TrieTable, which makes phrase
+ generation somewhat speedier -- phrases only
+ need to be extracted once (however, it is
+ quite possible they need to be scored
+ for each input sentence, for contextual models)'''
+
+ cdef TrieTable rules
+ cdef Sampler sampler
+ cdef Scorer scorer
+
+ cdef int max_chunks
+ cdef int max_target_chunks
+ cdef int max_length
+ cdef int max_target_length
+ cdef int max_nonterminals
+ cdef int max_initial_size
+ cdef int train_max_initial_size
+ cdef int min_gap_size
+ cdef int train_min_gap_size
+ cdef int category
+
+ cdef precomputed_index
+ cdef precomputed_collocations
+ cdef precompute_file
+ cdef max_rank
+ cdef int precompute_rank, precompute_secondary_rank
+ cdef bint use_baeza_yates
+ cdef bint use_index
+ cdef bint use_collocations
+ cdef float by_slack_factor
+
+ cdef prev_norm_prefix
+ cdef float extract_time
+ cdef float intersect_time
+ cdef SuffixArray fsa
+ cdef DataArray fda
+ cdef DataArray eda
+
+ cdef Alignment alignment
+ cdef IntList eid2symid
+ cdef IntList fid2symid
+ cdef bint tight_phrases
+ cdef bint require_aligned_terminal
+ cdef bint require_aligned_chunks
+
+ cdef IntList findexes
+ cdef IntList findexes1
+
+ cdef bint online
+ cdef samples_f
+ cdef phrases_f
+ cdef phrases_e
+ cdef phrases_fe
+ cdef phrases_al
+ cdef bilex_f
+ cdef bilex_e
+ cdef bilex_fe
+
+ def __cinit__(self,
+ # compiled alignment object (REQUIRED)
+ Alignment alignment,
+ # parameter for double-binary search; doesn't seem to matter much
+ float by_slack_factor=1.0,
+ # name of generic nonterminal used by Hiero
+ char* category="[X]",
+ # maximum number of contiguous chunks of terminal symbols in RHS of a rule. If None, defaults to max_nonterminals+1
+ max_chunks=None,
+ # maximum span of a grammar rule in TEST DATA
+ unsigned max_initial_size=10,
+ # maximum number of symbols (both T and NT) allowed in a rule
+ unsigned max_length=5,
+ # maximum number of nonterminals allowed in a rule (set >2 at your own risk)
+ unsigned max_nonterminals=2,
+ # maximum number of contiguous chunks of terminal symbols in target-side RHS of a rule. If None, defaults to max_nonterminals+1
+ max_target_chunks=None,
+ # maximum number of target side symbols (both T and NT) allowed in a rule. If None, defaults to max_initial_size
+ max_target_length=None,
+ # minimum span of a nonterminal in the RHS of a rule in TEST DATA
+ unsigned min_gap_size=2,
+ # filename of file containing precomputed collocations
+ precompute_file=None,
+ # maximum frequency rank of patterns used to compute triples (don't set higher than 20).
+ unsigned precompute_secondary_rank=20,
+ # maximum frequency rank of patterns used to compute collocations (no need to set higher than maybe 200-300)
+ unsigned precompute_rank=100,
+ # require extracted rules to have at least one aligned word
+ bint require_aligned_terminal=True,
+ # require each contiguous chunk of extracted rules to have at least one aligned word
+ bint require_aligned_chunks=False,
+ # maximum span of a grammar rule extracted from TRAINING DATA
+ unsigned train_max_initial_size=10,
+ # minimum span of an RHS nonterminal in a rule extracted from TRAINING DATA
+ unsigned train_min_gap_size=2,
+ # False if phrases should be loose (better but slower), True otherwise
+ bint tight_phrases=True,
+ # True to require use of double-binary alg, false otherwise
+ bint use_baeza_yates=True,
+ # True to enable used of precomputed collocations
+ bint use_collocations=True,
+ # True to enable use of precomputed inverted indices
+ bint use_index=True):
+ '''Note: we make a distinction between the min_gap_size
+ and max_initial_size used in test and train. The latter
+ are represented by train_min_gap_size and train_max_initial_size,
+ respectively. This is because Chiang's model does not require
+ them to be the same, therefore we don't either.'''
+ self.rules = TrieTable(True) # cache
+ self.rules.root = ExtendedTrieNode(phrase_location=PhraseLocation())
+ if alignment is None:
+ raise Exception("Must specify an alignment object")
+ self.alignment = alignment
+
+ # grammar parameters and settings
+ # NOTE: setting max_nonterminals > 2 is not currently supported in Hiero
+ self.max_length = max_length
+ self.max_nonterminals = max_nonterminals
+ self.max_initial_size = max_initial_size
+ self.train_max_initial_size = train_max_initial_size
+ self.min_gap_size = min_gap_size
+ self.train_min_gap_size = train_min_gap_size
+ self.category = sym_fromstring(category, False)
+
+ if max_chunks is None:
+ self.max_chunks = self.max_nonterminals + 1
+ else:
+ self.max_chunks = max_chunks
+
+ if max_target_chunks is None:
+ self.max_target_chunks = self.max_nonterminals + 1
+ else:
+ self.max_target_chunks = max_target_chunks
+
+ if max_target_length is None:
+ self.max_target_length = max_initial_size
+ else:
+ self.max_target_length = max_target_length
+
+ # algorithmic parameters and settings
+ self.precomputed_collocations = {}
+ self.precomputed_index = {}
+ self.use_index = use_index
+ self.use_collocations = use_collocations
+ self.max_rank = {}
+ self.precompute_file = precompute_file
+ self.precompute_rank = precompute_rank
+ self.precompute_secondary_rank = precompute_secondary_rank
+ self.use_baeza_yates = use_baeza_yates
+ self.by_slack_factor = by_slack_factor
+ self.tight_phrases = tight_phrases
+
+ if require_aligned_chunks:
+ # one condition is a stronger version of the other.
+ self.require_aligned_chunks = self.require_aligned_terminal = True
+ elif require_aligned_terminal:
+ self.require_aligned_chunks = False
+ self.require_aligned_terminal = True
+ else:
+ self.require_aligned_chunks = self.require_aligned_terminal = False
+
+ # diagnostics
+ self.prev_norm_prefix = ()
+
+ self.findexes = IntList(initial_len=10)
+ self.findexes1 = IntList(initial_len=10)
+
+ # Online stats
+
+ # True after data is added
+ self.online = False
+
+ # Keep track of everything that can be sampled:
+ self.samples_f = defaultdict(int)
+
+ # Phrase counts
+ self.phrases_f = defaultdict(int)
+ self.phrases_e = defaultdict(int)
+ self.phrases_fe = defaultdict(lambda: defaultdict(int))
+ self.phrases_al = defaultdict(lambda: defaultdict(tuple))
+
+ # Bilexical counts
+ self.bilex_f = defaultdict(int)
+ self.bilex_e = defaultdict(int)
+ self.bilex_fe = defaultdict(lambda: defaultdict(int))
+
+ def configure(self, SuffixArray fsarray, DataArray edarray,
+ Sampler sampler, Scorer scorer):
+ '''This gives the RuleFactory access to the Context object.
+ Here we also use it to precompute the most expensive intersections
+ in the corpus quickly.'''
+ self.fsa = fsarray
+ self.fda = fsarray.darray
+ self.eda = edarray
+ self.fid2symid = self.set_idmap(self.fda)
+ self.eid2symid = self.set_idmap(self.eda)
+ self.precompute()
+ self.sampler = sampler
+ self.scorer = scorer
+
+ cdef set_idmap(self, DataArray darray):
+ cdef int word_id, new_word_id, N
+ cdef IntList idmap
+
+ N = len(darray.id2word)
+ idmap = IntList(initial_len=N)
+ for word_id from 0 <= word_id < N:
+ new_word_id = sym_fromstring(darray.id2word[word_id], True)
+ idmap.arr[word_id] = new_word_id
+ return idmap
+
+
+ def pattern2phrase(self, pattern):
+ # pattern is a tuple, which we must convert to a hiero Phrase
+ result = ()
+ arity = 0
+ for word_id in pattern:
+ if word_id == -1:
+ arity = arity + 1
+ new_id = sym_setindex(self.category, arity)
+ else:
+ new_id = sym_fromstring(self.fda.id2word[word_id], True)
+ result = result + (new_id,)
+ return Phrase(result)
+
+ def pattern2phrase_plus(self, pattern):
+ # returns a list containing both the pattern, and pattern
+ # suffixed/prefixed with the NT category.
+ patterns = []
+ result = ()
+ arity = 0
+ for word_id in pattern:
+ if word_id == -1:
+ arity = arity + 1
+ new_id = sym_setindex(self.category, arity)
+ else:
+ new_id = sym_fromstring(self.fda.id2word[word_id], True)
+ result = result + (new_id,)
+ patterns.append(Phrase(result))
+ patterns.append(Phrase(result + (sym_setindex(self.category, 1),)))
+ patterns.append(Phrase((sym_setindex(self.category, 1),) + result))
+ return patterns
+
+ def precompute(self):
+ cdef Precomputation pre
+
+ if self.precompute_file is not None:
+ start_time = monitor_cpu()
+ logger.info("Reading precomputed data from file %s... ", self.precompute_file)
+ pre = Precomputation(from_binary=self.precompute_file)
+ # check parameters of precomputation -- some are critical and some are not
+ if pre.max_nonterminals != self.max_nonterminals:
+ logger.warn("Precomputation done with max nonterminals %d, decoder uses %d", pre.max_nonterminals, self.max_nonterminals)
+ if pre.max_length != self.max_length:
+ logger.warn("Precomputation done with max terminals %d, decoder uses %d", pre.max_length, self.max_length)
+ if pre.train_max_initial_size != self.train_max_initial_size:
+ raise Exception("Precomputation done with max initial size %d, decoder uses %d" % (pre.train_max_initial_size, self.train_max_initial_size))
+ if pre.train_min_gap_size != self.train_min_gap_size:
+ raise Exception("Precomputation done with min gap size %d, decoder uses %d" % (pre.train_min_gap_size, self.train_min_gap_size))
+ if self.use_index:
+ logger.info("Converting %d hash keys on precomputed inverted index... ", len(pre.precomputed_index))
+ for pattern, arr in pre.precomputed_index.iteritems():
+ phrases = self.pattern2phrase_plus(pattern)
+ for phrase in phrases:
+ self.precomputed_index[phrase] = arr
+ if self.use_collocations:
+ logger.info("Converting %d hash keys on precomputed collocations... ", len(pre.precomputed_collocations))
+ for pattern, arr in pre.precomputed_collocations.iteritems():
+ phrase = self.pattern2phrase(pattern)
+ self.precomputed_collocations[phrase] = arr
+ stop_time = monitor_cpu()
+ logger.info("Processing precomputations took %f seconds", stop_time - start_time)
+
+
+ def get_precomputed_collocation(self, phrase):
+ if phrase in self.precomputed_collocations:
+ arr = self.precomputed_collocations[phrase]
+ return PhraseLocation(arr=arr, arr_low=0, arr_high=len(arr), num_subpatterns=phrase.arity()+1)
+ return None
+
+
+ cdef int* baeza_yates_helper(self, int low1, int high1, int* arr1, int step1,
+ int low2, int high2, int* arr2, int step2,
+ int offset_by_one, int len_last, int num_subpatterns, int* result_len):
+ cdef int i1, i2, j1, j2, med1, med2, med1_plus, med1_minus, med2_minus, med2_plus
+ cdef int d_first, qsetsize, dsetsize, tmp, search_low, search_high
+ cdef int med_result_len, low_result_len, high_result_len
+ cdef long comparison
+ cdef int* result
+ cdef int* low_result
+ cdef int* med_result
+ cdef int* high_result
+ cdef Matching loc1, loc2
+
+ result = <int*> malloc(0*sizeof(int*))
+
+ d_first = 0
+ if high1 - low1 > high2 - low2:
+ d_first = 1
+
+ # First, check to see if we are at any of the recursive base cases
+ # Case 1: one of the sets is empty
+ if low1 >= high1 or low2 >= high2:
+ return result
+
+ # Case 2: sets are non-overlapping
+ assign_matching(&loc1, arr1, high1-step1, step1, self.fda.sent_id.arr)
+ assign_matching(&loc2, arr2, low2, step2, self.fda.sent_id.arr)
+ if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == -1:
+ return result
+
+ assign_matching(&loc1, arr1, low1, step1, self.fda.sent_id.arr)
+ assign_matching(&loc2, arr2, high2-step2, step2, self.fda.sent_id.arr)
+ if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == 1:
+ return result
+
+ # Case 3: query set and data set do not meet size mismatch constraints;
+ # We use mergesort instead in this case
+ qsetsize = (high1-low1) / step1
+ dsetsize = (high2-low2) / step2
+ if d_first:
+ tmp = qsetsize
+ qsetsize = dsetsize
+ dsetsize = tmp
+
+ if self.by_slack_factor * qsetsize * log(dsetsize) / log(2) > dsetsize:
+ free(result)
+ return self.merge_helper(low1, high1, arr1, step1, low2, high2, arr2, step2, offset_by_one, len_last, num_subpatterns, result_len)
+
+ # binary search. There are two flavors, depending on
+ # whether the queryset or dataset is first
+ if d_first:
+ med2 = median(low2, high2, step2)
+ assign_matching(&loc2, arr2, med2, step2, self.fda.sent_id.arr)
+
+ search_low = low1
+ search_high = high1
+ while search_low < search_high:
+ med1 = median(search_low, search_high, step1)
+ find_comparable_matchings(low1, high1, arr1, step1, med1, &med1_minus, &med1_plus)
+ comparison = self.compare_matchings_set(med1_minus, med1_plus, arr1, step1, &loc2, offset_by_one, len_last)
+ if comparison == -1:
+ search_low = med1_plus
+ elif comparison == 1:
+ search_high = med1_minus
+ else:
+ break
+ else:
+ med1 = median(low1, high1, step1)
+ find_comparable_matchings(low1, high1, arr1, step1, med1, &med1_minus, &med1_plus)
+
+ search_low = low2
+ search_high = high2
+ while search_low < search_high:
+ med2 = median(search_low, search_high, step2)
+ assign_matching(&loc2, arr2, med2, step2, self.fda.sent_id.arr)
+ comparison = self.compare_matchings_set(med1_minus, med1_plus, arr1, step1, &loc2, offset_by_one, len_last)
+ if comparison == -1:
+ search_high = med2
+ elif comparison == 1:
+ search_low = med2 + step2
+ else:
+ break
+
+ med_result_len = 0
+ med_result = <int*> malloc(0*sizeof(int*))
+ if search_high > search_low:
+ # Then there is a match for the median element of Q
+ # What we want to find is the group of all bindings in the first set
+ # s.t. their first element == the first element of med1. Then we
+ # want to store the bindings for all of those elements. We can
+ # subsequently throw all of them away.
+ med2_minus = med2
+ med2_plus = med2 + step2
+ i1 = med1_minus
+ while i1 < med1_plus:
+ assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr)
+ while med2_minus-step2 >= low2:
+ assign_matching(&loc2, arr2, med2_minus-step2, step2, self.fda.sent_id.arr)
+ if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) < 1:
+ med2_minus = med2_minus - step2
+ else:
+ break
+ i2 = med2_minus
+ while i2 < high2:
+ assign_matching(&loc2, arr2, i2, step2, self.fda.sent_id.arr)
+ comparison = self.compare_matchings(&loc1, &loc2, offset_by_one, len_last)
+ if comparison == 0:
+ pass
+ med_result = append_combined_matching(med_result, &loc1, &loc2, offset_by_one, num_subpatterns, &med_result_len)
+ if comparison == -1:
+ break
+ i2 = i2 + step2
+ if i2 > med2_plus:
+ med2_plus = i2
+ i1 = i1 + step1
+
+ tmp = med1_minus
+ med1_minus = med1_plus
+ med1_plus = tmp
+ else:
+ # No match; need to figure out the point of division in D and Q
+ med2_minus = med2
+ med2_plus = med2
+ if d_first:
+ med2_minus = med2_minus + step2
+ if comparison == -1:
+ med1_minus = med1_plus
+ if comparison == 1:
+ med1_plus = med1_minus
+ else:
+ tmp = med1_minus
+ med1_minus = med1_plus
+ med1_plus = tmp
+ if comparison == 1:
+ med2_minus = med2_minus + step2
+ med2_plus = med2_plus + step2
+
+ low_result_len = 0
+ low_result = self.baeza_yates_helper(low1, med1_plus, arr1, step1, low2, med2_plus, arr2, step2, offset_by_one, len_last, num_subpatterns, &low_result_len)
+ high_result_len = 0
+ high_result = self.baeza_yates_helper(med1_minus, high1, arr1, step1, med2_minus, high2, arr2, step2, offset_by_one, len_last, num_subpatterns, &high_result_len)
+
+ result = extend_arr(result, result_len, low_result, low_result_len)
+ result = extend_arr(result, result_len, med_result, med_result_len)
+ result = extend_arr(result, result_len, high_result, high_result_len)
+ free(low_result)
+ free(med_result)
+ free(high_result)
+
+ return result
+
+
+
+ cdef long compare_matchings_set(self, int i1_minus, int i1_plus, int* arr1, int step1,
+ Matching* loc2, int offset_by_one, int len_last):
+ """
+ Compares a *set* of bindings, all with the same first element,
+ to a single binding. Returns -1 if all comparisons == -1, 1 if all
+ comparisons == 1, and 0 otherwise.
+ """
+ cdef int i1, comparison, prev_comparison
+ cdef Matching l1_stack
+ cdef Matching* loc1
+
+ loc1 = &l1_stack
+
+ i1 = i1_minus
+ while i1 < i1_plus:
+ assign_matching(loc1, arr1, i1, step1, self.fda.sent_id.arr)
+ comparison = self.compare_matchings(loc1, loc2, offset_by_one, len_last)
+ if comparison == 0:
+ prev_comparison = 0
+ break
+ elif i1 == i1_minus:
+ prev_comparison = comparison
+ else:
+ if comparison != prev_comparison:
+ prev_comparison = 0
+ break
+ i1 = i1 + step1
+ return prev_comparison
+
+
+ cdef long compare_matchings(self, Matching* loc1, Matching* loc2, int offset_by_one, int len_last):
+ cdef int i
+
+ if loc1.sent_id > loc2.sent_id:
+ return 1
+ if loc2.sent_id > loc1.sent_id:
+ return -1
+
+ if loc1.size == 1 and loc2.size == 1:
+ if loc2.arr[loc2.start] - loc1.arr[loc1.start] <= self.train_min_gap_size:
+ return 1
+
+ elif offset_by_one:
+ for i from 1 <= i < loc1.size:
+ if loc1.arr[loc1.start+i] > loc2.arr[loc2.start+i-1]:
+ return 1
+ if loc1.arr[loc1.start+i] < loc2.arr[loc2.start+i-1]:
+ return -1
+
+ else:
+ if loc1.arr[loc1.start]+1 > loc2.arr[loc2.start]:
+ return 1
+ if loc1.arr[loc1.start]+1 < loc2.arr[loc2.start]:
+ return -1
+
+ for i from 1 <= i < loc1.size:
+ if loc1.arr[loc1.start+i] > loc2.arr[loc2.start+i]:
+ return 1
+ if loc1.arr[loc1.start+i] < loc2.arr[loc2.start+i]:
+ return -1
+
+ if loc2.arr[loc2.end-1] + len_last - loc1.arr[loc1.start] > self.train_max_initial_size:
+ return -1
+ return 0
+
+
+ cdef int* merge_helper(self, int low1, int high1, int* arr1, int step1,
+ int low2, int high2, int* arr2, int step2,
+ int offset_by_one, int len_last, int num_subpatterns, int* result_len):
+ cdef int i1, i2, j1, j2
+ cdef long comparison
+ cdef int* result
+ cdef Matching loc1, loc2
+
+ result_len[0] = 0
+ result = <int*> malloc(0*sizeof(int))
+
+ i1 = low1
+ i2 = low2
+ while i1 < high1 and i2 < high2:
+
+ # First, pop all unneeded loc2's off the stack
+ assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr)
+ while i2 < high2:
+ assign_matching(&loc2, arr2, i2, step2, self.fda.sent_id.arr)
+ if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == 1:
+ i2 = i2 + step2
+ else:
+ break
+
+ # Next: process all loc1's with the same starting val
+ j1 = i1
+ while i1 < high1 and arr1[j1] == arr1[i1]:
+ assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr)
+ j2 = i2
+ while j2 < high2:
+ assign_matching(&loc2, arr2, j2, step2, self.fda.sent_id.arr)
+ comparison = self.compare_matchings(&loc1, &loc2, offset_by_one, len_last)
+ if comparison == 0:
+ result = append_combined_matching(result, &loc1, &loc2, offset_by_one, num_subpatterns, result_len)
+ if comparison == 1:
+ pass
+ if comparison == -1:
+ break
+ else:
+ j2 = j2 + step2
+ i1 = i1 + step1
+ return result
+
+
+ cdef void sort_phrase_loc(self, IntList arr, PhraseLocation loc, Phrase phrase):
+ cdef int i, j
+ cdef VEB veb
+ cdef IntList result
+
+ if phrase in self.precomputed_index:
+ loc.arr = self.precomputed_index[phrase]
+ else:
+ loc.arr = IntList(initial_len=loc.sa_high-loc.sa_low)
+ veb = VEB(arr.len)
+ for i from loc.sa_low <= i < loc.sa_high:
+ veb._insert(arr.arr[i])
+ i = veb.veb.min_val
+ for j from 0 <= j < loc.sa_high-loc.sa_low:
+ loc.arr.arr[j] = i
+ i = veb._findsucc(i)
+ loc.arr_low = 0
+ loc.arr_high = loc.arr.len
+
+
+ cdef intersect_helper(self, Phrase prefix, Phrase suffix,
+ PhraseLocation prefix_loc, PhraseLocation suffix_loc, int algorithm):
+
+ cdef IntList arr1, arr2, result
+ cdef int low1, high1, step1, low2, high2, step2, offset_by_one, len_last, num_subpatterns, result_len
+ cdef int* result_ptr
+
+ result_len = 0
+
+ if sym_isvar(suffix[0]):
+ offset_by_one = 1
+ else:
+ offset_by_one = 0
+
+ len_last = len(suffix.getchunk(suffix.arity()))
+
+ if prefix_loc.arr is None:
+ self.sort_phrase_loc(self.fsa.sa, prefix_loc, prefix)
+ arr1 = prefix_loc.arr
+ low1 = prefix_loc.arr_low
+ high1 = prefix_loc.arr_high
+ step1 = prefix_loc.num_subpatterns
+
+ if suffix_loc.arr is None:
+ self.sort_phrase_loc(self.fsa.sa, suffix_loc, suffix)
+ arr2 = suffix_loc.arr
+ low2 = suffix_loc.arr_low
+ high2 = suffix_loc.arr_high
+ step2 = suffix_loc.num_subpatterns
+
+ num_subpatterns = prefix.arity()+1
+
+ if algorithm == MERGE:
+ result_ptr = self.merge_helper(low1, high1, arr1.arr, step1,
+ low2, high2, arr2.arr, step2,
+ offset_by_one, len_last, num_subpatterns, &result_len)
+ else:
+ result_ptr = self.baeza_yates_helper(low1, high1, arr1.arr, step1,
+ low2, high2, arr2.arr, step2,
+ offset_by_one, len_last, num_subpatterns, &result_len)
+
+ if result_len == 0:
+ free(result_ptr)
+ return None
+ else:
+ result = IntList()
+ free(result.arr)
+ result.arr = result_ptr
+ result.len = result_len
+ result.size = result_len
+ return PhraseLocation(arr_low=0, arr_high=result_len, arr=result, num_subpatterns=num_subpatterns)
+
+ cdef loc2str(self, PhraseLocation loc):
+ cdef int i, j
+ result = "{"
+ i = 0
+ while i < loc.arr_high:
+ result = result + "("
+ for j from i <= j < i + loc.num_subpatterns:
+ result = result + ("%d " %loc.arr[j])
+ result = result + ")"
+ i = i + loc.num_subpatterns
+ result = result + "}"
+ return result
+
+ cdef PhraseLocation intersect(self, prefix_node, suffix_node, Phrase phrase):
+ cdef Phrase prefix, suffix
+ cdef PhraseLocation prefix_loc, suffix_loc, result
+
+ prefix = prefix_node.phrase
+ suffix = suffix_node.phrase
+ prefix_loc = prefix_node.phrase_location
+ suffix_loc = suffix_node.phrase_location
+
+ result = self.get_precomputed_collocation(phrase)
+ if result is not None:
+ intersect_method = "precomputed"
+
+ if result is None:
+ if self.use_baeza_yates:
+ result = self.intersect_helper(prefix, suffix, prefix_loc, suffix_loc, BAEZA_YATES)
+ intersect_method="double binary"
+ else:
+ result = self.intersect_helper(prefix, suffix, prefix_loc, suffix_loc, MERGE)
+ intersect_method="merge"
+ return result
+
+ def advance(self, frontier, res, fwords):
+ cdef unsigned na
+ nf = []
+ for toskip, (i, alt, pathlen) in frontier:
+ spanlen = fwords[i][alt][2]
+ if toskip == 0:
+ res.append((i, alt, pathlen))
+ ni = i + spanlen
+ if ni < len(fwords) and pathlen + 1 < self.max_initial_size:
+ for na in range(len(fwords[ni])):
+ nf.append((toskip - 1, (ni, na, pathlen + 1)))
+ if len(nf) > 0:
+ return self.advance(nf, res, fwords)
+ else:
+ return res
+
+ def get_all_nodes_isteps_away(self, skip, i, spanlen, pathlen, fwords, next_states, reachable_buffer):
+ cdef unsigned alt_it
+ frontier = []
+ if i+spanlen+skip >= len(next_states):
+ return frontier
+ key = tuple([i,spanlen])
+ reachable = []
+ if key in reachable_buffer:
+ reachable = reachable_buffer[key]
+ else:
+ reachable = self.reachable(fwords, i, spanlen)
+ reachable_buffer[key] = reachable
+ for nextreachable in reachable:
+ for next_id in next_states[nextreachable]:
+ jump = self.shortest(fwords,i,next_id)
+ if jump < skip:
+ continue
+ if pathlen+jump <= self.max_initial_size:
+ for alt_id in range(len(fwords[next_id])):
+ if fwords[next_id][alt_id][0] != EPSILON:
+ newel = (next_id,alt_id,pathlen+jump)
+ if newel not in frontier:
+ frontier.append((next_id,alt_id,pathlen+jump))
+ return frontier
+
+ def reachable(self, fwords, ifrom, dist):
+ ret = []
+ if ifrom >= len(fwords):
+ return ret
+ for alt_id in range(len(fwords[ifrom])):
+ if fwords[ifrom][alt_id][0] == EPSILON:
+ ret.extend(self.reachable(fwords,ifrom+fwords[ifrom][alt_id][2],dist))
+ else:
+ if dist == 0:
+ if ifrom not in ret:
+ ret.append(ifrom)
+ else:
+ for ifromchild in self.reachable(fwords,ifrom+fwords[ifrom][alt_id][2],dist-1):
+ if ifromchild not in ret:
+ ret.append(ifromchild)
+
+ return ret
+
+ def shortest(self, fwords, ifrom, ito):
+ cdef unsigned alt_id
+ min = 1000
+ if ifrom > ito:
+ return min
+ if ifrom == ito:
+ return 0
+ for alt_id in range(len(fwords[ifrom])):
+ currmin = self.shortest(fwords,ifrom+fwords[ifrom][alt_id][2],ito)
+ if fwords[ifrom][alt_id][0] != EPSILON:
+ currmin += 1
+ if currmin < min:
+ min = currmin
+ return min
+
+ def get_next_states(self, _columns, curr_idx, min_dist=2):
+ result = []
+ candidate = [[curr_idx,0]]
+
+ while len(candidate) > 0:
+ curr = candidate.pop()
+ if curr[0] >= len(_columns):
+ continue
+ if curr[0] not in result and min_dist <= curr[1] <= self.max_initial_size:
+ result.append(curr[0]);
+ curr_col = _columns[curr[0]]
+ for alt in curr_col:
+ next_id = curr[0]+alt[2]
+ jump = 1
+ if alt[0] == EPSILON:
+ jump = 0
+ if next_id not in result and min_dist <= curr[1]+jump <= self.max_initial_size+1:
+ candidate.append([next_id,curr[1]+jump])
+ return sorted(result);
+
+ def input(self, fwords, meta):
+ '''When this function is called on the RuleFactory,
+ it looks up all of the rules that can be used to translate
+ the input sentence'''
+ cdef int i, j, k, flen, arity, num_subpatterns, num_samples, alt, alt_id, nualt
+ cdef float start_time
+ cdef PhraseLocation phrase_location
+ cdef IntList sample, chunklen
+ cdef Matching matching
+ cdef Phrase hiero_phrase
+
+ flen = len(fwords)
+ start_time = monitor_cpu()
+ self.extract_time = 0.0
+ self.intersect_time = 0.0
+ nodes_isteps_away_buffer = {}
+ hit = 0
+ reachable_buffer = {}
+
+ # Phrase pairs processed by suffix array extractor. Do not re-extract
+ # during online extraction. This is probably the hackiest part of
+ # online grammar extraction.
+ seen_phrases = set()
+
+ # Do not cache between sentences
+ self.rules.root = ExtendedTrieNode(phrase_location=PhraseLocation())
+
+ frontier = []
+ for i in range(len(fwords)):
+ for alt in range(0, len(fwords[i])):
+ if fwords[i][alt][0] != EPSILON:
+ frontier.append((i, i, (i,), alt, 0, self.rules.root, (), False))
+
+ xroot = None
+ x1 = sym_setindex(self.category, 1)
+ if x1 in self.rules.root.children:
+ xroot = self.rules.root.children[x1]
+ else:
+ xroot = ExtendedTrieNode(suffix_link=self.rules.root, phrase_location=PhraseLocation())
+ self.rules.root.children[x1] = xroot
+
+ for i in range(self.min_gap_size, len(fwords)):
+ for alt in range(0, len(fwords[i])):
+ if fwords[i][alt][0] != EPSILON:
+ frontier.append((i-self.min_gap_size, i, (i,), alt, self.min_gap_size, xroot, (x1,), True))
+
+ next_states = []
+ for i in range(len(fwords)):
+ next_states.append(self.get_next_states(fwords,i,self.min_gap_size))
+
+ while len(frontier) > 0:
+ new_frontier = []
+ for k, i, input_match, alt, pathlen, node, prefix, is_shadow_path in frontier:
+ word_id = fwords[i][alt][0]
+ spanlen = fwords[i][alt][2]
+ # TODO get rid of k -- pathlen is replacing it
+ if word_id == EPSILON:
+ # skipping because word_id is epsilon
+ if i+spanlen >= len(fwords):
+ continue
+ for nualt in range(0,len(fwords[i+spanlen])):
+ frontier.append((k, i+spanlen, input_match, nualt, pathlen, node, prefix, is_shadow_path))
+ continue
+
+ phrase = prefix + (word_id,)
+ hiero_phrase = Phrase(phrase)
+ arity = hiero_phrase.arity()
+
+ lookup_required = False
+ if word_id in node.children:
+ if node.children[word_id] is None:
+ # Path dead-ends at this node
+ continue
+ else:
+ # Path continues at this node
+ node = node.children[word_id]
+ else:
+ if node.suffix_link is None:
+ # Current node is root; lookup required
+ lookup_required = True
+ else:
+ if word_id in node.suffix_link.children:
+ if node.suffix_link.children[word_id] is None:
+ # Suffix link reports path is dead end
+ node.children[word_id] = None
+ continue
+ else:
+ # Suffix link indicates lookup is reqired
+ lookup_required = True
+ else:
+ #ERROR: We never get here
+ raise Exception("Keyword trie error")
+ # checking whether lookup_required
+ if lookup_required:
+ new_node = None
+ if is_shadow_path:
+ # Extending shadow path
+ # on the shadow path we don't do any search, we just use info from suffix link
+ new_node = ExtendedTrieNode(phrase_location=node.suffix_link.children[word_id].phrase_location,
+ suffix_link=node.suffix_link.children[word_id],
+ phrase=hiero_phrase)
+ else:
+ if arity > 0:
+ # Intersecting because of arity > 0
+ intersect_start_time = monitor_cpu()
+ phrase_location = self.intersect(node, node.suffix_link.children[word_id], hiero_phrase)
+ intersect_stop_time = monitor_cpu()
+ self.intersect_time += intersect_stop_time - intersect_start_time
+ else:
+ # Suffix array search
+ phrase_location = node.phrase_location
+ sa_range = self.fsa.lookup(sym_tostring(phrase[-1]), len(phrase)-1, phrase_location.sa_low, phrase_location.sa_high)
+ if sa_range is not None:
+ phrase_location = PhraseLocation(sa_low=sa_range[0], sa_high=sa_range[1])
+ else:
+ phrase_location = None
+
+ if phrase_location is None:
+ node.children[word_id] = None
+ # Search failed
+ continue
+ # Search succeeded
+ suffix_link = self.rules.root
+ if node.suffix_link is not None:
+ suffix_link = node.suffix_link.children[word_id]
+ new_node = ExtendedTrieNode(phrase_location=phrase_location,
+ suffix_link=suffix_link,
+ phrase=hiero_phrase)
+ node.children[word_id] = new_node
+ node = new_node
+
+ '''Automatically add a trailing X node, if allowed --
+ This should happen before we get to extraction (so that
+ the node will exist if needed)'''
+ if arity < self.max_nonterminals:
+ xcat_index = arity+1
+ xcat = sym_setindex(self.category, xcat_index)
+ suffix_link_xcat_index = xcat_index
+ if is_shadow_path:
+ suffix_link_xcat_index = xcat_index-1
+ suffix_link_xcat = sym_setindex(self.category, suffix_link_xcat_index)
+ node.children[xcat] = ExtendedTrieNode(phrase_location=node.phrase_location,
+ suffix_link=node.suffix_link.children[suffix_link_xcat],
+ phrase= Phrase(phrase + (xcat,)))
+
+ # sample from range
+ if not is_shadow_path:
+ sample = self.sampler.sample(node.phrase_location)
+ num_subpatterns = (<PhraseLocation> node.phrase_location).num_subpatterns
+ chunklen = IntList(initial_len=num_subpatterns)
+ for j from 0 <= j < num_subpatterns:
+ chunklen.arr[j] = hiero_phrase.chunklen(j)
+ extracts = []
+ j = 0
+ extract_start = monitor_cpu()
+ while j < sample.len:
+ extract = []
+
+ assign_matching(&matching, sample.arr, j, num_subpatterns, self.fda.sent_id.arr)
+ loc = tuple(sample[j:j+num_subpatterns])
+ extract = self.extract(hiero_phrase, &matching, chunklen.arr, num_subpatterns)
+ extracts.extend([(e, loc) for e in extract])
+ j = j + num_subpatterns
+
+ num_samples = sample.len/num_subpatterns
+ extract_stop = monitor_cpu()
+ self.extract_time = self.extract_time + extract_stop - extract_start
+ if len(extracts) > 0:
+ fcount = Counter()
+ fphrases = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
+ for (f, e, count, als), loc in extracts:
+ fcount[f] += count
+ fphrases[f][e][als].append(loc)
+ for f, elist in fphrases.iteritems():
+ for e, alslist in elist.iteritems():
+ alignment, max_locs = max(alslist.iteritems(), key=lambda x: len(x[1]))
+ locs = tuple(itertools.chain.from_iterable(alslist.itervalues()))
+ count = len(locs)
+ scores = self.scorer.score(FeatureContext(
+ f, e, count, fcount[f], num_samples,
+ (k,i+spanlen), locs, input_match,
+ fwords, self.fda, self.eda,
+ meta,
+ # Include online stats. None if none.
+ self.online_ctx_lookup(f, e)))
+ # Phrase pair processed
+ if self.online:
+ seen_phrases.add((f, e))
+ yield Rule(self.category, f, e, scores, alignment)
+
+ if len(phrase) < self.max_length and i+spanlen < len(fwords) and pathlen+1 <= self.max_initial_size:
+ for alt_id in range(len(fwords[i+spanlen])):
+ new_frontier.append((k, i+spanlen, input_match, alt_id, pathlen + 1, node, phrase, is_shadow_path))
+ num_subpatterns = arity
+ if not is_shadow_path:
+ num_subpatterns = num_subpatterns + 1
+ if len(phrase)+1 < self.max_length and arity < self.max_nonterminals and num_subpatterns < self.max_chunks:
+ xcat = sym_setindex(self.category, arity+1)
+ xnode = node.children[xcat]
+ # I put spanlen=1 below
+ key = tuple([self.min_gap_size, i, 1, pathlen])
+ frontier_nodes = []
+ if key in nodes_isteps_away_buffer:
+ frontier_nodes = nodes_isteps_away_buffer[key]
+ else:
+ frontier_nodes = self.get_all_nodes_isteps_away(self.min_gap_size, i, 1, pathlen, fwords, next_states, reachable_buffer)
+ nodes_isteps_away_buffer[key] = frontier_nodes
+
+ for i, alt, pathlen in frontier_nodes:
+ new_frontier.append((k, i, input_match + (i,), alt, pathlen, xnode, phrase +(xcat,), is_shadow_path))
+ frontier = new_frontier
+
+ # Online rule extraction and scoring
+ if self.online:
+ f_syms = tuple(word[0][0] for word in fwords)
+ for f, lex_i, lex_j in self.get_f_phrases(f_syms):
+ spanlen = (lex_j - lex_i) + 1
+ if not sym_isvar(f[0]):
+ spanlen += 1
+ if not sym_isvar(f[1]):
+ spanlen += 1
+ for e in self.phrases_fe.get(f, ()):
+ if (f, e) not in seen_phrases:
+ # Don't add multiple instances of the same phrase here
+ seen_phrases.add((f, e))
+ scores = self.scorer.score(FeatureContext(
+ f, e, 0, 0, 0,
+ spanlen, None, None,
+ fwords, self.fda, self.eda,
+ meta,
+ self.online_ctx_lookup(f, e)))
+ alignment = self.phrases_al[f][e]
+ yield Rule(self.category, f, e, scores, alignment)
+
+ stop_time = monitor_cpu()
+ logger.info("Total time for rule lookup, extraction, and scoring = %f seconds", (stop_time - start_time))
+ gc.collect()
+ logger.info(" Extract time = %f seconds", self.extract_time)
+ logger.info(" Intersect time = %f seconds", self.intersect_time)
+
+
+ cdef int find_fixpoint(self,
+ int f_low, f_high,
+ int* f_links_low, int* f_links_high,
+ int* e_links_low, int* e_links_high,
+ int e_in_low, int e_in_high,
+ int* e_low, int* e_high,
+ int* f_back_low, int* f_back_high,
+ int f_sent_len, int e_sent_len,
+ int max_f_len, int max_e_len,
+ int min_fx_size, int min_ex_size,
+ int max_new_x,
+ int allow_low_x, int allow_high_x,
+ int allow_arbitrary_x, int write_log):
+ cdef int e_low_prev, e_high_prev, f_low_prev, f_high_prev, new_x, new_low_x, new_high_x
+
+ e_low[0] = e_in_low
+ e_high[0] = e_in_high
+ self.find_projection(f_low, f_high, f_links_low, f_links_high, e_low, e_high)
+ if e_low[0] == -1:
+ # low-priority corner case: if phrase w is unaligned,
+ # but we don't require aligned terminals, then returning
+ # an error here might prevent extraction of allowed
+ # rule X -> X_1 w X_2 / X_1 X_2. This is probably
+ # not worth the bother, though.
+ return 0
+ elif e_in_low != -1 and e_low[0] != e_in_low:
+ if e_in_low - e_low[0] < min_ex_size:
+ e_low[0] = e_in_low - min_ex_size
+ if e_low[0] < 0:
+ return 0
+
+ if e_high[0] - e_low[0] > max_e_len:
+ return 0
+ elif e_in_high != -1 and e_high[0] != e_in_high:
+ if e_high[0] - e_in_high < min_ex_size:
+ e_high[0] = e_in_high + min_ex_size
+ if e_high[0] > e_sent_len:
+ return 0
+
+ f_back_low[0] = -1
+ f_back_high[0] = -1
+ f_low_prev = f_low
+ f_high_prev = f_high
+ new_x = 0
+ new_low_x = 0
+ new_high_x = 0
+
+ while True:
+
+ if f_back_low[0] == -1:
+ self.find_projection(e_low[0], e_high[0], e_links_low, e_links_high, f_back_low, f_back_high)
+ else:
+ self.find_projection(e_low[0], e_low_prev, e_links_low, e_links_high, f_back_low, f_back_high)
+ self.find_projection(e_high_prev, e_high[0], e_links_low, e_links_high, f_back_low, f_back_high)
+
+ if f_back_low[0] > f_low:
+ f_back_low[0] = f_low
+
+ if f_back_high[0] < f_high:
+ f_back_high[0] = f_high
+
+ if f_back_low[0] == f_low_prev and f_back_high[0] == f_high_prev:
+ return 1
+
+ if allow_low_x == 0 and f_back_low[0] < f_low:
+ # FAIL: f phrase is not tight
+ return 0
+
+ if f_back_high[0] - f_back_low[0] > max_f_len:
+ # FAIL: f back projection is too wide
+ return 0
+
+ if allow_high_x == 0 and f_back_high[0] > f_high:
+ # FAIL: extension on high side not allowed
+ return 0
+
+ if f_low != f_back_low[0]:
+ if new_low_x == 0:
+ if new_x >= max_new_x:
+ # FAIL: extension required on low side violates max # of gaps
+ return 0
+ else:
+ new_x = new_x + 1
+ new_low_x = 1
+ if f_low - f_back_low[0] < min_fx_size:
+ f_back_low[0] = f_low - min_fx_size
+ if f_back_high[0] - f_back_low[0] > max_f_len:
+ # FAIL: extension required on low side violates max initial length
+ return 0
+ if f_back_low[0] < 0:
+ # FAIL: extension required on low side violates sentence boundary
+ return 0
+
+ if f_high != f_back_high[0]:
+ if new_high_x == 0:
+ if new_x >= max_new_x:
+ # FAIL: extension required on high side violates max # of gaps
+ return 0
+ else:
+ new_x = new_x + 1
+ new_high_x = 1
+ if f_back_high[0] - f_high < min_fx_size:
+ f_back_high[0] = f_high + min_fx_size
+ if f_back_high[0] - f_back_low[0] > max_f_len:
+ # FAIL: extension required on high side violates max initial length
+ return 0
+ if f_back_high[0] > f_sent_len:
+ # FAIL: extension required on high side violates sentence boundary
+ return 0
+
+ e_low_prev = e_low[0]
+ e_high_prev = e_high[0]
+
+ self.find_projection(f_back_low[0], f_low_prev, f_links_low, f_links_high, e_low, e_high)
+ self.find_projection(f_high_prev, f_back_high[0], f_links_low, f_links_high, e_low, e_high)
+ if e_low[0] == e_low_prev and e_high[0] == e_high_prev:
+ return 1
+ if allow_arbitrary_x == 0:
+ # FAIL: arbitrary expansion not permitted
+ return 0
+ if e_high[0] - e_low[0] > max_e_len:
+ # FAIL: re-projection violates sentence max phrase length
+ return 0
+ f_low_prev = f_back_low[0]
+ f_high_prev = f_back_high[0]
+
+
+ cdef find_projection(self, int in_low, int in_high, int* in_links_low, int* in_links_high,
+ int* out_low, int* out_high):
+ cdef int i
+ for i from in_low <= i < in_high:
+ if in_links_low[i] != -1:
+ if out_low[0] == -1 or in_links_low[i] < out_low[0]:
+ out_low[0] = in_links_low[i]
+ if out_high[0] == -1 or in_links_high[i] > out_high[0]:
+ out_high[0] = in_links_high[i]
+
+
+ cdef int* int_arr_extend(self, int* arr, int* arr_len, int* data, int data_len):
+ cdef int new_len
+ new_len = arr_len[0] + data_len
+ arr = <int*> realloc(arr, new_len*sizeof(int))
+ memcpy(arr+arr_len[0], data, data_len*sizeof(int))
+ arr_len[0] = new_len
+ return arr
+
+
+ cdef extract_phrases(self, int e_low, int e_high, int* e_gap_low, int* e_gap_high, int* e_links_low, int num_gaps,
+ int f_low, int f_high, int* f_gap_low, int* f_gap_high, int* f_links_low,
+ int sent_id, int e_sent_len, int e_sent_start):
+ cdef int i, j, k, m, n, *e_gap_order, e_x_low, e_x_high, e_x_gap_low, e_x_gap_high
+ cdef int *e_gaps1, *e_gaps2, len1, len2, step, num_chunks
+ cdef IntList ephr_arr
+ cdef result
+
+ result = []
+ len1 = 0
+ e_gaps1 = <int*> malloc(0)
+ ephr_arr = IntList()
+
+ e_gap_order = <int*> malloc(num_gaps*sizeof(int))
+ if num_gaps > 0:
+ e_gap_order[0] = 0
+ for i from 1 <= i < num_gaps:
+ for j from 0 <= j < i:
+ if e_gap_low[i] < e_gap_low[j]:
+ for k from j <= k < i:
+ e_gap_order[k+1] = e_gap_order[k]
+ e_gap_order[j] = i
+ break
+ else:
+ e_gap_order[i] = i
+
+ e_x_low = e_low
+ e_x_high = e_high
+ if not self.tight_phrases:
+ while e_x_low > 0 and e_high - e_x_low < self.train_max_initial_size and e_links_low[e_x_low-1] == -1:
+ e_x_low = e_x_low - 1
+ while e_x_high < e_sent_len and e_x_high - e_low < self.train_max_initial_size and e_links_low[e_x_high] == -1:
+ e_x_high = e_x_high + 1
+
+ for i from e_x_low <= i <= e_low:
+ e_gaps1 = self.int_arr_extend(e_gaps1, &len1, &i, 1)
+
+ for i from 0 <= i < num_gaps:
+ e_gaps2 = <int*> malloc(0)
+ len2 = 0
+
+ j = e_gap_order[i]
+ e_x_gap_low = e_gap_low[j]
+ e_x_gap_high = e_gap_high[j]
+ if not self.tight_phrases:
+ while e_x_gap_low > e_x_low and e_links_low[e_x_gap_low-1] == -1:
+ e_x_gap_low = e_x_gap_low - 1
+ while e_x_gap_high < e_x_high and e_links_low[e_x_gap_high] == -1:
+ e_x_gap_high = e_x_gap_high + 1
+
+ k = 0
+ step = 1+(i*2)
+ while k < len1:
+ for m from e_x_gap_low <= m <= e_gap_low[j]:
+ if m >= e_gaps1[k+step-1]:
+ for n from e_gap_high[j] <= n <= e_x_gap_high:
+ if n-m >= 1: # extractor.py doesn't restrict target-side gap length
+ e_gaps2 = self.int_arr_extend(e_gaps2, &len2, e_gaps1+k, step)
+ e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &m, 1)
+ e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &n, 1)
+ k = k + step
+ free(e_gaps1)
+ e_gaps1 = e_gaps2
+ len1 = len2
+
+ step = 1+(num_gaps*2)
+ e_gaps2 = <int*> malloc(0)
+ len2 = 0
+ for i from e_high <= i <= e_x_high:
+ j = 0
+ while j < len1:
+ if i - e_gaps1[j] <= self.train_max_initial_size and i >= e_gaps1[j+step-1]:
+ e_gaps2 = self.int_arr_extend(e_gaps2, &len2, e_gaps1+j, step)
+ e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &i, 1)
+ j = j + step
+ free(e_gaps1)
+ e_gaps1 = e_gaps2
+ len1 = len2
+
+ step = (num_gaps+1)*2
+ i = 0
+
+ cdef IntList indexes
+ while i < len1:
+ ephr_arr._clear()
+ num_chunks = 0
+ indexes = IntList()
+ for j from 0 <= j < num_gaps+1:
+ if e_gaps1[i+2*j] < e_gaps1[i+(2*j)+1]:
+ num_chunks = num_chunks + 1
+ for k from e_gaps1[i+2*j] <= k < e_gaps1[i+(2*j)+1]:
+ indexes.append(k)
+ ephr_arr._append(self.eid2symid[self.eda.data.arr[e_sent_start+k]])
+ if j < num_gaps:
+ indexes.append(sym_setindex(self.category, e_gap_order[j]+1))
+ ephr_arr._append(sym_setindex(self.category, e_gap_order[j]+1))
+ i = i + step
+ if ephr_arr.len <= self.max_target_length and num_chunks <= self.max_target_chunks:
+ result.append((Phrase(ephr_arr),indexes))
+
+ free(e_gaps1)
+ free(e_gap_order)
+ return result
+
+ cdef IntList create_alignments(self, int* sent_links, int num_links,
+ IntList findexes, IntList eindexes):
+ cdef unsigned i
+ cdef IntList ret = IntList()
+ for i in range(findexes.len):
+ s = findexes.arr[i]
+ if s < 0: continue
+ idx = 0
+ while idx < num_links * 2:
+ if sent_links[idx] == s:
+ j = eindexes.index(sent_links[idx+1])
+ ret.append(i * ALIGNMENT_CODE + j)
+ idx += 2
+ return ret
+
+ cdef extract(self, Phrase phrase, Matching* matching, int* chunklen, int num_chunks):
+ cdef int* sent_links, *e_links_low, *e_links_high, *f_links_low, *f_links_high
+ cdef int *f_gap_low, *f_gap_high, *e_gap_low, *e_gap_high, num_gaps, gap_start
+ cdef int i, j, k, e_i, f_i, num_links, num_aligned_chunks, met_constraints, x
+ cdef int f_low, f_high, e_low, e_high, f_back_low, f_back_high
+ cdef int e_sent_start, e_sent_end, f_sent_start, f_sent_end, e_sent_len, f_sent_len
+ cdef int e_word_count, f_x_low, f_x_high, e_x_low, e_x_high, phrase_len
+ cdef float pair_count
+ cdef extracts, phrase_list
+ cdef IntList fphr_arr
+ cdef Phrase fphr
+ cdef reason_for_failure
+
+ fphr_arr = IntList()
+ phrase_len = phrase.n
+ extracts = []
+ sent_links = self.alignment._get_sent_links(matching.sent_id, &num_links)
+
+ e_sent_start = self.eda.sent_index.arr[matching.sent_id]
+ e_sent_end = self.eda.sent_index.arr[matching.sent_id+1]
+ e_sent_len = e_sent_end - e_sent_start - 1
+ f_sent_start = self.fda.sent_index.arr[matching.sent_id]
+ f_sent_end = self.fda.sent_index.arr[matching.sent_id+1]
+ f_sent_len = f_sent_end - f_sent_start - 1
+
+ self.findexes1.reset()
+ sofar = 0
+ for i in range(num_chunks):
+ for j in range(chunklen[i]):
+ self.findexes1.append(matching.arr[matching.start+i]+j-f_sent_start);
+ sofar += 1
+ if i+1 < num_chunks:
+ self.findexes1.append(phrase[sofar])
+ sofar += 1
+
+
+ e_links_low = <int*> malloc(e_sent_len*sizeof(int))
+ e_links_high = <int*> malloc(e_sent_len*sizeof(int))
+ f_links_low = <int*> malloc(f_sent_len*sizeof(int))
+ f_links_high = <int*> malloc(f_sent_len*sizeof(int))
+ f_gap_low = <int*> malloc((num_chunks+1)*sizeof(int))
+ f_gap_high = <int*> malloc((num_chunks+1)*sizeof(int))
+ e_gap_low = <int*> malloc((num_chunks+1)*sizeof(int))
+ e_gap_high = <int*> malloc((num_chunks+1)*sizeof(int))
+ memset(f_gap_low, 0, (num_chunks+1)*sizeof(int))
+ memset(f_gap_high, 0, (num_chunks+1)*sizeof(int))
+ memset(e_gap_low, 0, (num_chunks+1)*sizeof(int))
+ memset(e_gap_high, 0, (num_chunks+1)*sizeof(int))
+
+ reason_for_failure = ""
+
+ for i from 0 <= i < e_sent_len:
+ e_links_low[i] = -1
+ e_links_high[i] = -1
+ for i from 0 <= i < f_sent_len:
+ f_links_low[i] = -1
+ f_links_high[i] = -1
+
+ # this is really inefficient -- might be good to
+ # somehow replace with binary search just for the f
+ # links that we care about (but then how to look up
+ # when we want to check something on the e side?)
+ i = 0
+ while i < num_links*2:
+ f_i = sent_links[i]
+ e_i = sent_links[i+1]
+ if f_links_low[f_i] == -1 or f_links_low[f_i] > e_i:
+ f_links_low[f_i] = e_i
+ if f_links_high[f_i] == -1 or f_links_high[f_i] < e_i + 1:
+ f_links_high[f_i] = e_i + 1
+ if e_links_low[e_i] == -1 or e_links_low[e_i] > f_i:
+ e_links_low[e_i] = f_i
+ if e_links_high[e_i] == -1 or e_links_high[e_i] < f_i + 1:
+ e_links_high[e_i] = f_i + 1
+ i = i + 2
+
+ als = []
+ for x in range(matching.start,matching.end):
+ al = (matching.arr[x]-f_sent_start,f_links_low[matching.arr[x]-f_sent_start])
+ als.append(al)
+ # check all source-side alignment constraints
+ met_constraints = 1
+ if self.require_aligned_terminal:
+ num_aligned_chunks = 0
+ for i from 0 <= i < num_chunks:
+ for j from 0 <= j < chunklen[i]:
+ if f_links_low[matching.arr[matching.start+i]+j-f_sent_start] > -1:
+ num_aligned_chunks = num_aligned_chunks + 1
+ break
+ if num_aligned_chunks == 0:
+ reason_for_failure = "No aligned terminals"
+ met_constraints = 0
+ if self.require_aligned_chunks and num_aligned_chunks < num_chunks:
+ reason_for_failure = "Unaligned chunk"
+ met_constraints = 0
+
+ if met_constraints and self.tight_phrases:
+ # outside edge constraints are checked later
+ for i from 0 <= i < num_chunks-1:
+ if f_links_low[matching.arr[matching.start+i]+chunklen[i]-f_sent_start] == -1:
+ reason_for_failure = "Gaps are not tight phrases"
+ met_constraints = 0
+ break
+ if f_links_low[matching.arr[matching.start+i+1]-1-f_sent_start] == -1:
+ reason_for_failure = "Gaps are not tight phrases"
+ met_constraints = 0
+ break
+
+ f_low = matching.arr[matching.start] - f_sent_start
+ f_high = matching.arr[matching.start + matching.size - 1] + chunklen[num_chunks-1] - f_sent_start
+ if met_constraints:
+
+ if self.find_fixpoint(f_low, f_high, f_links_low, f_links_high, e_links_low, e_links_high,
+ -1, -1, &e_low, &e_high, &f_back_low, &f_back_high, f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ self.train_min_gap_size, 0,
+ self.max_nonterminals - num_chunks + 1, 1, 1, 0, 0):
+ gap_error = 0
+ num_gaps = 0
+
+ if f_back_low < f_low:
+ f_gap_low[0] = f_back_low
+ f_gap_high[0] = f_low
+ num_gaps = 1
+ gap_start = 0
+ phrase_len = phrase_len+1
+ if phrase_len > self.max_length:
+ gap_error = 1
+ if self.tight_phrases:
+ if f_links_low[f_back_low] == -1 or f_links_low[f_low-1] == -1:
+ gap_error = 1
+ reason_for_failure = "Inside edges of preceding subphrase are not tight"
+ else:
+ gap_start = 1
+ if self.tight_phrases and f_links_low[f_low] == -1:
+ # this is not a hard error. we can't extract this phrase
+ # but we still might be able to extract a superphrase
+ met_constraints = 0
+
+ for i from 0 <= i < matching.size - 1:
+ f_gap_low[1+i] = matching.arr[matching.start+i] + chunklen[i] - f_sent_start
+ f_gap_high[1+i] = matching.arr[matching.start+i+1] - f_sent_start
+ num_gaps = num_gaps + 1
+
+ if f_high < f_back_high:
+ f_gap_low[gap_start+num_gaps] = f_high
+ f_gap_high[gap_start+num_gaps] = f_back_high
+ num_gaps = num_gaps + 1
+ phrase_len = phrase_len+1
+ if phrase_len > self.max_length:
+ gap_error = 1
+ if self.tight_phrases:
+ if f_links_low[f_back_high-1] == -1 or f_links_low[f_high] == -1:
+ gap_error = 1
+ reason_for_failure = "Inside edges of following subphrase are not tight"
+ else:
+ if self.tight_phrases and f_links_low[f_high-1] == -1:
+ met_constraints = 0
+
+ if gap_error == 0:
+ e_word_count = e_high - e_low
+ for i from 0 <= i < num_gaps: # check integrity of subphrases
+ if self.find_fixpoint(f_gap_low[gap_start+i], f_gap_high[gap_start+i],
+ f_links_low, f_links_high, e_links_low, e_links_high,
+ -1, -1, e_gap_low+gap_start+i, e_gap_high+gap_start+i,
+ f_gap_low+gap_start+i, f_gap_high+gap_start+i,
+ f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ 0, 0, 0, 0, 0, 0, 0) == 0:
+ gap_error = 1
+ reason_for_failure = "Subphrase [%d, %d] failed integrity check" % (f_gap_low[gap_start+i], f_gap_high[gap_start+i])
+ break
+
+ if gap_error == 0:
+ i = 1
+ self.findexes.reset()
+ if f_back_low < f_low:
+ fphr_arr._append(sym_setindex(self.category, i))
+ i = i+1
+ self.findexes.append(sym_setindex(self.category, i))
+ self.findexes.extend(self.findexes1)
+ for j from 0 <= j < phrase.n:
+ if sym_isvar(phrase.syms[j]):
+ fphr_arr._append(sym_setindex(self.category, i))
+ i = i + 1
+ else:
+ fphr_arr._append(phrase.syms[j])
+ if f_back_high > f_high:
+ fphr_arr._append(sym_setindex(self.category, i))
+ self.findexes.append(sym_setindex(self.category, i))
+
+ fphr = Phrase(fphr_arr)
+ if met_constraints:
+ phrase_list = self.extract_phrases(e_low, e_high, e_gap_low + gap_start, e_gap_high + gap_start, e_links_low, num_gaps,
+ f_back_low, f_back_high, f_gap_low + gap_start, f_gap_high + gap_start, f_links_low,
+ matching.sent_id, e_sent_len, e_sent_start)
+ if len(phrase_list) > 0:
+ pair_count = 1.0 / len(phrase_list)
+ else:
+ pair_count = 0
+ reason_for_failure = "Didn't extract anything from [%d, %d] -> [%d, %d]" % (f_back_low, f_back_high, e_low, e_high)
+ for phrase2, eindexes in phrase_list:
+ als1 = self.create_alignments(sent_links,num_links,self.findexes,eindexes)
+ extracts.append((fphr, phrase2, pair_count, tuple(als1)))
+ if (num_gaps < self.max_nonterminals and
+ phrase_len < self.max_length and
+ f_back_high - f_back_low + self.train_min_gap_size <= self.train_max_initial_size):
+ if (f_back_low == f_low and
+ f_low >= self.train_min_gap_size and
+ ((not self.tight_phrases) or (f_links_low[f_low-1] != -1 and f_links_low[f_back_high-1] != -1))):
+ f_x_low = f_low-self.train_min_gap_size
+ met_constraints = 1
+ if self.tight_phrases:
+ while f_x_low >= 0 and f_links_low[f_x_low] == -1:
+ f_x_low = f_x_low - 1
+ if f_x_low < 0 or f_back_high - f_x_low > self.train_max_initial_size:
+ met_constraints = 0
+
+ if (met_constraints and
+ (self.find_fixpoint(f_x_low, f_back_high,
+ f_links_low, f_links_high, e_links_low, e_links_high,
+ e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high,
+ f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ 1, 1, 1, 1, 0, 1, 0) == 1) and
+ ((not self.tight_phrases) or f_links_low[f_x_low] != -1) and
+ self.find_fixpoint(f_x_low, f_low, # check integrity of new subphrase
+ f_links_low, f_links_high, e_links_low, e_links_high,
+ -1, -1, e_gap_low, e_gap_high, f_gap_low, f_gap_high,
+ f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ 0, 0, 0, 0, 0, 0, 0)):
+ fphr_arr._clear()
+ i = 1
+ self.findexes.reset()
+ self.findexes.append(sym_setindex(self.category, i))
+ fphr_arr._append(sym_setindex(self.category, i))
+ i = i+1
+ self.findexes.extend(self.findexes1)
+ for j from 0 <= j < phrase.n:
+ if sym_isvar(phrase.syms[j]):
+ fphr_arr._append(sym_setindex(self.category, i))
+ i = i + 1
+ else:
+ fphr_arr._append(phrase.syms[j])
+ if f_back_high > f_high:
+ fphr_arr._append(sym_setindex(self.category, i))
+ self.findexes.append(sym_setindex(self.category, i))
+ fphr = Phrase(fphr_arr)
+ phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low, e_gap_high, e_links_low, num_gaps+1,
+ f_x_low, f_x_high, f_gap_low, f_gap_high, f_links_low, matching.sent_id,
+ e_sent_len, e_sent_start)
+ if len(phrase_list) > 0:
+ pair_count = 1.0 / len(phrase_list)
+ else:
+ pair_count = 0
+ for phrase2, eindexes in phrase_list:
+ als2 = self.create_alignments(sent_links,num_links,self.findexes,eindexes)
+ extracts.append((fphr, phrase2, pair_count, tuple(als2)))
+
+ if (f_back_high == f_high and
+ f_sent_len - f_high >= self.train_min_gap_size and
+ ((not self.tight_phrases) or (f_links_low[f_high] != -1 and f_links_low[f_back_low] != -1))):
+ f_x_high = f_high+self.train_min_gap_size
+ met_constraints = 1
+ if self.tight_phrases:
+ while f_x_high <= f_sent_len and f_links_low[f_x_high-1] == -1:
+ f_x_high = f_x_high + 1
+ if f_x_high > f_sent_len or f_x_high - f_back_low > self.train_max_initial_size:
+ met_constraints = 0
+
+ if (met_constraints and
+ self.find_fixpoint(f_back_low, f_x_high,
+ f_links_low, f_links_high, e_links_low, e_links_high,
+ e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high,
+ f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ 1, 1, 1, 0, 1, 1, 0) and
+ ((not self.tight_phrases) or f_links_low[f_x_high-1] != -1) and
+ self.find_fixpoint(f_high, f_x_high,
+ f_links_low, f_links_high, e_links_low, e_links_high,
+ -1, -1, e_gap_low+gap_start+num_gaps, e_gap_high+gap_start+num_gaps,
+ f_gap_low+gap_start+num_gaps, f_gap_high+gap_start+num_gaps,
+ f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ 0, 0, 0, 0, 0, 0, 0)):
+ fphr_arr._clear()
+ i = 1
+ self.findexes.reset()
+ if f_back_low < f_low:
+ fphr_arr._append(sym_setindex(self.category, i))
+ i = i+1
+ self.findexes.append(sym_setindex(self.category, i))
+ self.findexes.extend(self.findexes1)
+ for j from 0 <= j < phrase.n:
+ if sym_isvar(phrase.syms[j]):
+ fphr_arr._append(sym_setindex(self.category, i))
+ i = i + 1
+ else:
+ fphr_arr._append(phrase.syms[j])
+ fphr_arr._append(sym_setindex(self.category, i))
+ self.findexes.append(sym_setindex(self.category, i))
+ fphr = Phrase(fphr_arr)
+ phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low+gap_start, e_gap_high+gap_start, e_links_low, num_gaps+1,
+ f_x_low, f_x_high, f_gap_low+gap_start, f_gap_high+gap_start, f_links_low,
+ matching.sent_id, e_sent_len, e_sent_start)
+ if len(phrase_list) > 0:
+ pair_count = 1.0 / len(phrase_list)
+ else:
+ pair_count = 0
+ for phrase2, eindexes in phrase_list:
+ als3 = self.create_alignments(sent_links,num_links,self.findexes,eindexes)
+ extracts.append((fphr, phrase2, pair_count, tuple(als3)))
+ if (num_gaps < self.max_nonterminals - 1 and
+ phrase_len+1 < self.max_length and
+ f_back_high == f_high and
+ f_back_low == f_low and
+ f_back_high - f_back_low + (2*self.train_min_gap_size) <= self.train_max_initial_size and
+ f_low >= self.train_min_gap_size and
+ f_high <= f_sent_len - self.train_min_gap_size and
+ ((not self.tight_phrases) or (f_links_low[f_low-1] != -1 and f_links_low[f_high] != -1))):
+
+ met_constraints = 1
+ f_x_low = f_low-self.train_min_gap_size
+ if self.tight_phrases:
+ while f_x_low >= 0 and f_links_low[f_x_low] == -1:
+ f_x_low = f_x_low - 1
+ if f_x_low < 0:
+ met_constraints = 0
+
+ f_x_high = f_high+self.train_min_gap_size
+ if self.tight_phrases:
+ while f_x_high <= f_sent_len and f_links_low[f_x_high-1] == -1:
+ f_x_high = f_x_high + 1
+ if f_x_high > f_sent_len or f_x_high - f_x_low > self.train_max_initial_size:
+ met_constraints = 0
+
+ if (met_constraints and
+ (self.find_fixpoint(f_x_low, f_x_high,
+ f_links_low, f_links_high, e_links_low, e_links_high,
+ e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high,
+ f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ 1, 1, 2, 1, 1, 1, 1) == 1) and
+ ((not self.tight_phrases) or (f_links_low[f_x_low] != -1 and f_links_low[f_x_high-1] != -1)) and
+ self.find_fixpoint(f_x_low, f_low,
+ f_links_low, f_links_high, e_links_low, e_links_high,
+ -1, -1, e_gap_low, e_gap_high, f_gap_low, f_gap_high,
+ f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ 0, 0, 0, 0, 0, 0, 0) and
+ self.find_fixpoint(f_high, f_x_high,
+ f_links_low, f_links_high, e_links_low, e_links_high,
+ -1, -1, e_gap_low+1+num_gaps, e_gap_high+1+num_gaps,
+ f_gap_low+1+num_gaps, f_gap_high+1+num_gaps,
+ f_sent_len, e_sent_len,
+ self.train_max_initial_size, self.train_max_initial_size,
+ 0, 0, 0, 0, 0, 0, 0)):
+ fphr_arr._clear()
+ i = 1
+ self.findexes.reset()
+ self.findexes.append(sym_setindex(self.category, i))
+ fphr_arr._append(sym_setindex(self.category, i))
+ i = i+1
+ self.findexes.extend(self.findexes1)
+ for j from 0 <= j < phrase.n:
+ if sym_isvar(phrase.syms[j]):
+ fphr_arr._append(sym_setindex(self.category, i))
+ i = i + 1
+ else:
+ fphr_arr._append(phrase.syms[j])
+ fphr_arr._append(sym_setindex(self.category, i))
+ self.findexes.append(sym_setindex(self.category, i))
+ fphr = Phrase(fphr_arr)
+ phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low, e_gap_high, e_links_low, num_gaps+2,
+ f_x_low, f_x_high, f_gap_low, f_gap_high, f_links_low,
+ matching.sent_id, e_sent_len, e_sent_start)
+ if len(phrase_list) > 0:
+ pair_count = 1.0 / len(phrase_list)
+ else:
+ pair_count = 0
+ for phrase2, eindexes in phrase_list:
+ als4 = self.create_alignments(sent_links,num_links,self.findexes,eindexes)
+ extracts.append((fphr, phrase2, pair_count, tuple(als4)))
+ else:
+ reason_for_failure = "Unable to extract basic phrase"
+
+ free(sent_links)
+ free(f_links_low)
+ free(f_links_high)
+ free(e_links_low)
+ free(e_links_high)
+ free(f_gap_low)
+ free(f_gap_high)
+ free(e_gap_low)
+ free(e_gap_high)
+
+ return extracts
+
+ #
+ # Online grammar extraction handling
+ #
+
+ # Aggregate stats from a training instance
+ # (Extract rules, update counts)
+ def add_instance(self, f_words, e_words, alignment):
+
+ self.online = True
+
+ # Rules extracted from this instance
+ # Track span of lexical items (terminals) to make
+ # sure we don't extract the same rule for the same
+ # span more than once.
+ # (f, e, al, lex_f_i, lex_f_j)
+ rules = set()
+
+ f_len = len(f_words)
+ e_len = len(e_words)
+
+ # Pre-compute alignment info
+ al = [[] for i in range(f_len)]
+ fe_span = [[e_len + 1, -1] for i in range(f_len)]
+ ef_span = [[f_len + 1, -1] for i in range(e_len)]
+ for f, e in alignment:
+ al[f].append(e)
+ fe_span[f][0] = min(fe_span[f][0], e)
+ fe_span[f][1] = max(fe_span[f][1], e)
+ ef_span[e][0] = min(ef_span[e][0], f)
+ ef_span[e][1] = max(ef_span[e][1], f)
+
+ # Target side word coverage
+ cover = [0] * e_len
+ # Non-terminal coverage
+ f_nt_cover = [0] * f_len
+ e_nt_cover = [0] * e_len
+
+ # Extract all possible hierarchical phrases starting at a source index
+ # f_ i and j are current, e_ i and j are previous
+ # We care _considering_ f_j, so it is not yet in counts
+ def extract(f_i, f_j, e_i, e_j, min_bound, wc, links, nt, nt_open):
+ # Phrase extraction limits
+ if f_j > (f_len - 1) or (f_j - f_i) + 1 > self.max_initial_size:
+ return
+ # Unaligned word
+ if not al[f_j]:
+ # Adjacent to non-terminal: extend (non-terminal now open)
+ if nt and nt[-1][2] == f_j - 1:
+ nt[-1][2] += 1
+ extract(f_i, f_j + 1, e_i, e_j, min_bound, wc, links, nt, True)
+ nt[-1][2] -= 1
+ # Unless non-terminal already open, always extend with word
+ # Make sure adding a word doesn't exceed length
+ if not nt_open and wc < self.max_length:
+ extract(f_i, f_j + 1, e_i, e_j, min_bound, wc + 1, links, nt, False)
+ return
+ # Aligned word
+ link_i = fe_span[f_j][0]
+ link_j = fe_span[f_j][1]
+ new_e_i = min(link_i, e_i)
+ new_e_j = max(link_j, e_j)
+ # Check reverse links of newly covered words to see if they violate left
+ # bound (return) or extend minimum right bound for chunk
+ new_min_bound = min_bound
+ # First aligned word creates span
+ if e_j == -1:
+ for i from new_e_i <= i <= new_e_j:
+ if ef_span[i][0] < f_i:
+ return
+ new_min_bound = max(new_min_bound, ef_span[i][1])
+ # Other aligned words extend span
+ else:
+ for i from new_e_i <= i < e_i:
+ if ef_span[i][0] < f_i:
+ return
+ new_min_bound = max(new_min_bound, ef_span[i][1])
+ for i from e_j < i <= new_e_j:
+ if ef_span[i][0] < f_i:
+ return
+ new_min_bound = max(new_min_bound, ef_span[i][1])
+ # Extract, extend with word (unless non-terminal open)
+ if not nt_open:
+ nt_collision = False
+ for link in al[f_j]:
+ if e_nt_cover[link]:
+ nt_collision = True
+ # Non-terminal collisions block word extraction and extension, but
+ # may be okay for continuing non-terminals
+ if not nt_collision and wc < self.max_length:
+ plus_links = []
+ for link in al[f_j]:
+ plus_links.append((f_j, link))
+ cover[link] += 1
+ links.append(plus_links)
+ if links and f_j >= new_min_bound:
+ rules.add(self.form_rule(f_i, new_e_i, f_words[f_i:f_j + 1], e_words[new_e_i:new_e_j + 1], nt, links))
+ extract(f_i, f_j + 1, new_e_i, new_e_j, new_min_bound, wc + 1, links, nt, False)
+ links.pop()
+ for link in al[f_j]:
+ cover[link] -= 1
+ # Try to add a word to current non-terminal (if any), extract, extend
+ if nt and nt[-1][2] == f_j - 1:
+ # Add to non-terminal, checking for collisions
+ old_last_nt = nt[-1][:]
+ nt[-1][2] = f_j
+ if link_i < nt[-1][3]:
+ if not span_check(cover, link_i, nt[-1][3] - 1):
+ nt[-1] = old_last_nt
+ return
+ span_inc(cover, link_i, nt[-1][3] - 1)
+ span_inc(e_nt_cover, link_i, nt[-1][3] - 1)
+ nt[-1][3] = link_i
+ if link_j > nt[-1][4]:
+ if not span_check(cover, nt[-1][4] + 1, link_j):
+ nt[-1] = old_last_nt
+ return
+ span_inc(cover, nt[-1][4] + 1, link_j)
+ span_inc(e_nt_cover, nt[-1][4] + 1, link_j)
+ nt[-1][4] = link_j
+ if links and f_j >= new_min_bound:
+ rules.add(self.form_rule(f_i, new_e_i, f_words[f_i:f_j + 1], e_words[new_e_i:new_e_j + 1], nt, links))
+ extract(f_i, f_j + 1, new_e_i, new_e_j, new_min_bound, wc, links, nt, False)
+ nt[-1] = old_last_nt
+ if link_i < nt[-1][3]:
+ span_dec(cover, link_i, nt[-1][3] - 1)
+ span_dec(e_nt_cover, link_i, nt[-1][3] - 1)
+ if link_j > nt[-1][4]:
+ span_dec(cover, nt[-1][4] + 1, link_j)
+ span_dec(e_nt_cover, nt[-1][4] + 1, link_j)
+ # Try to start a new non-terminal, extract, extend
+ if (not nt or f_j - nt[-1][2] > 1) and wc < self.max_length and len(nt) < self.max_nonterminals:
+ # Check for collisions
+ if not span_check(cover, link_i, link_j):
+ return
+ span_inc(cover, link_i, link_j)
+ span_inc(e_nt_cover, link_i, link_j)
+ nt.append([(nt[-1][0] + 1) if nt else 1, f_j, f_j, link_i, link_j])
+ # Require at least one word in phrase
+ if links and f_j >= new_min_bound:
+ rules.add(self.form_rule(f_i, new_e_i, f_words[f_i:f_j + 1], e_words[new_e_i:new_e_j + 1], nt, links))
+ extract(f_i, f_j + 1, new_e_i, new_e_j, new_min_bound, wc + 1, links, nt, False)
+ nt.pop()
+ span_dec(cover, link_i, link_j)
+ span_dec(e_nt_cover, link_i, link_j)
+
+ # Try to extract phrases from every f index
+ for f_i from 0 <= f_i < f_len:
+ # Skip if phrases won't be tight on left side
+ if not al[f_i]:
+ continue
+ extract(f_i, f_i, f_len + 1, -1, f_i, 0, [], [], False)
+
+ # Update possible phrases (samples)
+ # This could be more efficiently integrated with extraction
+ # at the cost of readability
+ for f, lex_i, lex_j in self.get_f_phrases(f_words):
+ self.samples_f[f] += 1
+
+ # Update phrase counts
+ for rule in rules:
+ (f_ph, e_ph, al) = rule[:3]
+ self.phrases_f[f_ph] += 1
+ self.phrases_e[e_ph] += 1
+ self.phrases_fe[f_ph][e_ph] += 1
+ if not self.phrases_al[f_ph][e_ph]:
+ self.phrases_al[f_ph][e_ph] = al
+
+ # Update Bilexical counts
+ for e_w in e_words:
+ self.bilex_e[e_w] += 1
+ for f_w in f_words:
+ self.bilex_f[f_w] += 1
+ for e_w in e_words:
+ self.bilex_fe[f_w][e_w] += 1
+
+ # Create a rule from source, target, non-terminals, and alignments
+ def form_rule(self, f_i, e_i, f_span, e_span, nt, al):
+
+ # Substitute in non-terminals
+ nt_inv = sorted(nt, cmp=lambda x, y: cmp(x[3], y[3]))
+ f_sym = list(f_span[:])
+ off = f_i
+ for next_nt in nt:
+ nt_len = (next_nt[2] - next_nt[1]) + 1
+ i = 0
+ while i < nt_len:
+ f_sym.pop(next_nt[1] - off)
+ i += 1
+ f_sym.insert(next_nt[1] - off, sym_setindex(self.category, next_nt[0]))
+ off += (nt_len - 1)
+ e_sym = list(e_span[:])
+ off = e_i
+ for next_nt in nt_inv:
+ nt_len = (next_nt[4] - next_nt[3]) + 1
+ i = 0
+ while i < nt_len:
+ e_sym.pop(next_nt[3] - off)
+ i += 1
+ e_sym.insert(next_nt[3] - off, sym_setindex(self.category, next_nt[0]))
+ off += (nt_len - 1)
+
+ # Adjusting alignment links takes some doing
+ links = [list(link) for sub in al for link in sub]
+ links_inv = sorted(links, cmp=lambda x, y: cmp(x[1], y[1]))
+ links_len = len(links)
+ nt_len = len(nt)
+ nt_i = 0
+ off = f_i
+ i = 0
+ while i < links_len:
+ while nt_i < nt_len and links[i][0] > nt[nt_i][1]:
+ off += (nt[nt_i][2] - nt[nt_i][1])
+ nt_i += 1
+ links[i][0] -= off
+ i += 1
+ nt_i = 0
+ off = e_i
+ i = 0
+ while i < links_len:
+ while nt_i < nt_len and links_inv[i][1] > nt_inv[nt_i][3]:
+ off += (nt_inv[nt_i][4] - nt_inv[nt_i][3])
+ nt_i += 1
+ links_inv[i][1] -= off
+ i += 1
+
+ # Find lexical span
+ lex_f_i = f_i
+ lex_f_j = f_i + (len(f_span) - 1)
+ if nt:
+ if nt[0][1] == lex_f_i:
+ lex_f_i += (nt[0][2] - nt[0][1]) + 1
+ if nt[-1][2] == lex_f_j:
+ lex_f_j -= (nt[-1][2] - nt[-1][1]) + 1
+
+ # Create rule (f_phrase, e_phrase, links, f_link_min, f_link_max)
+ f = Phrase(f_sym)
+ e = Phrase(e_sym)
+ a = tuple(self.alignment.link(i, j) for i, j in links)
+ return (f, e, a, lex_f_i, lex_f_j)
+
+ # Rule string from rule
+ def fmt_rule(self, f, e, a):
+ a_str = ' '.join('{0}-{1}'.format(*self.alignment.unlink(packed)) for packed in a)
+ return '[X] ||| {0} ||| {1} ||| {2}'.format(f, e, a_str)
+
+ # Debugging
+ def dump_online_stats(self):
+ logger.info('------------------------------')
+ logger.info(' Online Stats ')
+ logger.info('------------------------------')
+ logger.info('f')
+ for w in self.bilex_f:
+ logger.info(sym_tostring(w) + ' : ' + str(self.bilex_f[w]))
+ logger.info('e')
+ for w in self.bilex_e:
+ logger.info(sym_tostring(w) + ' : ' + str(self.bilex_e[w]))
+ logger.info('fe')
+ for w in self.bilex_fe:
+ for w2 in self.bilex_fe[w]:
+ logger.info(sym_tostring(w) + ' : ' + sym_tostring(w2) + ' : ' + str(self.bilex_fe[w][w2]))
+ logger.info('F')
+ for ph in self.phrases_f:
+ logger.info(str(ph) + ' ||| ' + str(self.phrases_f[ph]))
+ logger.info('E')
+ for ph in self.phrases_e:
+ logger.info(str(ph) + ' ||| ' + str(self.phrases_e[ph]))
+ logger.info('FE')
+ self.dump_online_rules()
+
+ def dump_online_rules(self):
+ for ph in self.phrases_fe:
+ for ph2 in self.phrases_fe[ph]:
+ logger.info(self.fmt_rule(str(ph), str(ph2), self.phrases_al[ph][ph2]) + ' ||| ' + str(self.phrases_fe[ph][ph2]))
+
+ # Lookup online stats for phrase pair (f, e). Return None if no match.
+ # IMPORTANT: use get() to avoid adding items to defaultdict
+ def online_ctx_lookup(self, f, e):
+ if self.online:
+ fcount = self.phrases_f.get(f, 0)
+ fsample_count = self.samples_f.get(f, 0)
+ d = self.phrases_fe.get(f, None)
+ paircount = d.get(e, 0) if d else 0
+ return OnlineFeatureContext(fcount, fsample_count, paircount, self.bilex_f, self.bilex_e, self.bilex_fe)
+ return None
+
+ # Find all phrases that we might try to extract
+ # (Used for EGivenFCoherent)
+ # Return set of (fphrase, lex_i, lex_j)
+ def get_f_phrases(self, f_words):
+
+ f_len = len(f_words)
+ phrases = set() # (fphrase, lex_i, lex_j)
+
+ def extract(f_i, f_j, lex_i, lex_j, wc, ntc, syms):
+ # Phrase extraction limits
+ if f_j > (f_len - 1) or (f_j - f_i) + 1 > self.max_initial_size:
+ return
+ # Extend with word
+ if wc + ntc < self.max_length:
+ syms.append(f_words[f_j])
+ f = Phrase(syms)
+ new_lex_i = min(lex_i, f_j)
+ new_lex_j = max(lex_j, f_j)
+ phrases.add((f, new_lex_i, new_lex_j))
+ extract(f_i, f_j + 1, new_lex_i, new_lex_j, wc + 1, ntc, syms)
+ syms.pop()
+ # Extend with existing non-terminal
+ if syms and sym_isvar(syms[-1]):
+ # Don't re-extract the same phrase
+ extract(f_i, f_j + 1, lex_i, lex_j, wc, ntc, syms)
+ # Extend with new non-terminal
+ if wc + ntc < self.max_length:
+ if not syms or (ntc < self.max_nonterminals and not sym_isvar(syms[-1])):
+ syms.append(sym_setindex(self.category, ntc + 1))
+ f = Phrase(syms)
+ if wc > 0:
+ phrases.add((f, lex_i, lex_j))
+ extract(f_i, f_j + 1, lex_i, lex_j, wc, ntc + 1, syms)
+ syms.pop()
+
+ # Try to extract phrases from every f index
+ for f_i from 0 <= f_i < f_len:
+ extract(f_i, f_i, f_len, -1, 0, 0, [])
+
+ return phrases
+
+# Spans are _inclusive_ on both ends [i, j]
+def span_check(vec, i, j):
+ k = i
+ while k <= j:
+ if vec[k]:
+ return False
+ k += 1
+ return True
+
+def span_inc(vec, i, j):
+ k = i
+ while k <= j:
+ vec[k] += 1
+ k += 1
+
+def span_dec(vec, i, j):
+ k = i
+ while k <= j:
+ vec[k] -= 1
+ k += 1