summaryrefslogtreecommitdiff
path: root/mira/kbest_mira.cc
diff options
context:
space:
mode:
authorAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
committerAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
commit5b8253e0e1f1393a509fb9975ba8c1347af758ed (patch)
tree1790470b1d07a0b4973ebce19192e896566ea60b /mira/kbest_mira.cc
parent2389a5a8a43dda87c355579838559515b0428421 (diff)
parentb203f8c5dc8cff1b9c9c2073832b248fcad0765a (diff)
fixed conflicts
Diffstat (limited to 'mira/kbest_mira.cc')
-rw-r--r--mira/kbest_mira.cc309
1 files changed, 0 insertions, 309 deletions
diff --git a/mira/kbest_mira.cc b/mira/kbest_mira.cc
deleted file mode 100644
index 8b7993dd..00000000
--- a/mira/kbest_mira.cc
+++ /dev/null
@@ -1,309 +0,0 @@
-#include <sstream>
-#include <iostream>
-#include <vector>
-#include <cassert>
-#include <cmath>
-#include <tr1/memory>
-
-#include <boost/program_options.hpp>
-#include <boost/program_options/variables_map.hpp>
-
-#include "hg_sampler.h"
-#include "sentence_metadata.h"
-#include "scorer.h"
-#include "verbose.h"
-#include "viterbi.h"
-#include "hg.h"
-#include "prob.h"
-#include "kbest.h"
-#include "ff_register.h"
-#include "decoder.h"
-#include "filelib.h"
-#include "fdict.h"
-#include "weights.h"
-#include "sparse_vector.h"
-#include "sampler.h"
-
-using namespace std;
-namespace po = boost::program_options;
-
-bool invert_score;
-std::tr1::shared_ptr<MT19937> rng;
-
-void RandomPermutation(int len, vector<int>* p_ids) {
- vector<int>& ids = *p_ids;
- ids.resize(len);
- for (int i = 0; i < len; ++i) ids[i] = i;
- for (int i = len; i > 0; --i) {
- int j = rng->next() * i;
- if (j == i) i--;
- swap(ids[i-1], ids[j]);
- }
-}
-
-bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
- po::options_description opts("Configuration options");
- opts.add_options()
- ("input_weights,w",po::value<string>(),"Input feature weights file")
- ("source,i",po::value<string>(),"Source file for development set")
- ("passes,p", po::value<int>()->default_value(15), "Number of passes through the training data")
- ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation(s) (tokenized text file)")
- ("mt_metric,m",po::value<string>()->default_value("ibm_bleu"), "Scoring metric (ibm_bleu, nist_bleu, koehn_bleu, ter, combi)")
- ("max_step_size,C", po::value<double>()->default_value(0.01), "regularization strength (C)")
- ("mt_metric_scale,s", po::value<double>()->default_value(1.0), "Amount to scale MT loss function by")
- ("k_best_size,k", po::value<int>()->default_value(250), "Size of hypothesis list to search for oracles")
- ("sample_forest,f", "Instead of a k-best list, sample k hypotheses from the decoder's forest")
- ("sample_forest_unit_weight_vector,x", "Before sampling (must use -f option), rescale the weight vector used so it has unit length; this may improve the quality of the samples")
- ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
- ("decoder_config,c",po::value<string>(),"Decoder configuration file");
- po::options_description clo("Command line options");
- clo.add_options()
- ("config", po::value<string>(), "Configuration file")
- ("help,h", "Print this help message and exit");
- po::options_description dconfig_options, dcmdline_options;
- dconfig_options.add(opts);
- dcmdline_options.add(opts).add(clo);
-
- po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
- if (conf->count("config")) {
- ifstream config((*conf)["config"].as<string>().c_str());
- po::store(po::parse_config_file(config, dconfig_options), *conf);
- }
- po::notify(*conf);
-
- if (conf->count("help") || !conf->count("input_weights") || !conf->count("source") || !conf->count("decoder_config") || !conf->count("reference")) {
- cerr << dcmdline_options << endl;
- return false;
- }
- return true;
-}
-
-static const double kMINUS_EPSILON = -1e-6;
-
-struct HypothesisInfo {
- SparseVector<double> features;
- double mt_metric;
-};
-
-struct GoodBadOracle {
- std::tr1::shared_ptr<HypothesisInfo> good;
- std::tr1::shared_ptr<HypothesisInfo> bad;
-};
-
-struct TrainingObserver : public DecoderObserver {
- TrainingObserver(const int k, const DocScorer& d, bool sf, vector<GoodBadOracle>* o) : ds(d), oracles(*o), kbest_size(k), sample_forest(sf) {}
- const DocScorer& ds;
- vector<GoodBadOracle>& oracles;
- std::tr1::shared_ptr<HypothesisInfo> cur_best;
- const int kbest_size;
- const bool sample_forest;
-
- const HypothesisInfo& GetCurrentBestHypothesis() const {
- return *cur_best;
- }
-
- virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
- UpdateOracles(smeta.GetSentenceID(), *hg);
- }
-
- std::tr1::shared_ptr<HypothesisInfo> MakeHypothesisInfo(const SparseVector<double>& feats, const double score) {
- std::tr1::shared_ptr<HypothesisInfo> h(new HypothesisInfo);
- h->features = feats;
- h->mt_metric = score;
- return h;
- }
-
- void UpdateOracles(int sent_id, const Hypergraph& forest) {
- std::tr1::shared_ptr<HypothesisInfo>& cur_good = oracles[sent_id].good;
- std::tr1::shared_ptr<HypothesisInfo>& cur_bad = oracles[sent_id].bad;
- cur_bad.reset(); // TODO get rid of??
-
- if (sample_forest) {
- vector<WordID> cur_prediction;
- ViterbiESentence(forest, &cur_prediction);
- float sentscore = ds[sent_id]->ScoreCandidate(cur_prediction)->ComputeScore();
- cur_best = MakeHypothesisInfo(ViterbiFeatures(forest), sentscore);
-
- vector<HypergraphSampler::Hypothesis> samples;
- HypergraphSampler::sample_hypotheses(forest, kbest_size, &*rng, &samples);
- for (unsigned i = 0; i < samples.size(); ++i) {
- sentscore = ds[sent_id]->ScoreCandidate(samples[i].words)->ComputeScore();
- if (invert_score) sentscore *= -1.0;
- if (!cur_good || sentscore > cur_good->mt_metric)
- cur_good = MakeHypothesisInfo(samples[i].fmap, sentscore);
- if (!cur_bad || sentscore < cur_bad->mt_metric)
- cur_bad = MakeHypothesisInfo(samples[i].fmap, sentscore);
- }
- } else {
- KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, kbest_size);
- for (int i = 0; i < kbest_size; ++i) {
- const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
- kbest.LazyKthBest(forest.nodes_.size() - 1, i);
- if (!d) break;
- float sentscore = ds[sent_id]->ScoreCandidate(d->yield)->ComputeScore();
- if (invert_score) sentscore *= -1.0;
- // cerr << TD::GetString(d->yield) << " ||| " << d->score << " ||| " << sentscore << endl;
- if (i == 0)
- cur_best = MakeHypothesisInfo(d->feature_values, sentscore);
- if (!cur_good || sentscore > cur_good->mt_metric)
- cur_good = MakeHypothesisInfo(d->feature_values, sentscore);
- if (!cur_bad || sentscore < cur_bad->mt_metric)
- cur_bad = MakeHypothesisInfo(d->feature_values, sentscore);
- }
- //cerr << "GOOD: " << cur_good->mt_metric << endl;
- //cerr << " CUR: " << cur_best->mt_metric << endl;
- //cerr << " BAD: " << cur_bad->mt_metric << endl;
- }
- }
-};
-
-void ReadTrainingCorpus(const string& fname, vector<string>* c) {
- ReadFile rf(fname);
- istream& in = *rf.stream();
- string line;
- while(in) {
- getline(in, line);
- if (!in) break;
- c->push_back(line);
- }
-}
-
-bool ApproxEqual(double a, double b) {
- if (a == b) return true;
- return (fabs(a-b)/fabs(b)) < 0.000001;
-}
-
-int main(int argc, char** argv) {
- register_feature_functions();
- SetSilent(true); // turn off verbose decoder output
-
- po::variables_map conf;
- if (!InitCommandLine(argc, argv, &conf)) return 1;
-
- if (conf.count("random_seed"))
- rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
- else
- rng.reset(new MT19937);
- const bool sample_forest = conf.count("sample_forest") > 0;
- const bool sample_forest_unit_weight_vector = conf.count("sample_forest_unit_weight_vector") > 0;
- if (sample_forest_unit_weight_vector && !sample_forest) {
- cerr << "Cannot --sample_forest_unit_weight_vector without --sample_forest" << endl;
- return 1;
- }
- vector<string> corpus;
- ReadTrainingCorpus(conf["source"].as<string>(), &corpus);
- const string metric_name = conf["mt_metric"].as<string>();
- ScoreType type = ScoreTypeFromString(metric_name);
- if (type == TER) {
- invert_score = true;
- } else {
- invert_score = false;
- }
- DocScorer ds(type, conf["reference"].as<vector<string> >(), "");
- cerr << "Loaded " << ds.size() << " references for scoring with " << metric_name << endl;
- if (ds.size() != corpus.size()) {
- cerr << "Mismatched number of references (" << ds.size() << ") and sources (" << corpus.size() << ")\n";
- return 1;
- }
-
- ReadFile ini_rf(conf["decoder_config"].as<string>());
- Decoder decoder(ini_rf.stream());
-
- // load initial weights
- vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
- SparseVector<weight_t> lambdas;
- Weights::InitFromFile(conf["input_weights"].as<string>(), &dense_weights);
- Weights::InitSparseVector(dense_weights, &lambdas);
-
- const double max_step_size = conf["max_step_size"].as<double>();
- const double mt_metric_scale = conf["mt_metric_scale"].as<double>();
-
- assert(corpus.size() > 0);
- vector<GoodBadOracle> oracles(corpus.size());
-
- TrainingObserver observer(conf["k_best_size"].as<int>(), ds, sample_forest, &oracles);
- int cur_sent = 0;
- int lcount = 0;
- int normalizer = 0;
- double tot_loss = 0;
- int dots = 0;
- int cur_pass = 0;
- SparseVector<double> tot;
- tot += lambdas; // initial weights
- normalizer++; // count for initial weights
- int max_iteration = conf["passes"].as<int>() * corpus.size();
- string msg = "# MIRA tuned weights";
- string msga = "# MIRA tuned weights AVERAGED";
- vector<int> order;
- RandomPermutation(corpus.size(), &order);
- while (lcount <= max_iteration) {
- lambdas.init_vector(&dense_weights);
- if ((cur_sent * 40 / corpus.size()) > dots) { ++dots; cerr << '.'; }
- if (corpus.size() == cur_sent) {
- cerr << " [AVG METRIC LAST PASS=" << (tot_loss / corpus.size()) << "]\n";
- Weights::ShowLargestFeatures(dense_weights);
- cur_sent = 0;
- tot_loss = 0;
- dots = 0;
- ostringstream os;
- os << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << ".gz";
- SparseVector<double> x = tot;
- x /= normalizer;
- ostringstream sa;
- sa << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "-avg.gz";
- x.init_vector(&dense_weights);
- Weights::WriteToFile(os.str(), dense_weights, true, &msg);
- ++cur_pass;
- RandomPermutation(corpus.size(), &order);
- }
- if (cur_sent == 0) {
- cerr << "PASS " << (lcount / corpus.size() + 1) << endl;
- }
- decoder.SetId(order[cur_sent]);
- double sc = 1.0;
- if (sample_forest_unit_weight_vector) {
- sc = lambdas.l2norm();
- if (sc > 0) {
- for (unsigned i = 0; i < dense_weights.size(); ++i)
- dense_weights[i] /= sc;
- }
- }
- decoder.Decode(corpus[order[cur_sent]], &observer); // update oracles
- if (sc && sc != 1.0) {
- for (unsigned i = 0; i < dense_weights.size(); ++i)
- dense_weights[i] *= sc;
- }
- const HypothesisInfo& cur_hyp = observer.GetCurrentBestHypothesis();
- const HypothesisInfo& cur_good = *oracles[order[cur_sent]].good;
- const HypothesisInfo& cur_bad = *oracles[order[cur_sent]].bad;
- tot_loss += cur_hyp.mt_metric;
- if (!ApproxEqual(cur_hyp.mt_metric, cur_good.mt_metric)) {
- const double loss = cur_bad.features.dot(dense_weights) - cur_good.features.dot(dense_weights) +
- mt_metric_scale * (cur_good.mt_metric - cur_bad.mt_metric);
- //cerr << "LOSS: " << loss << endl;
- if (loss > 0.0) {
- SparseVector<double> diff = cur_good.features;
- diff -= cur_bad.features;
- double step_size = loss / diff.l2norm_sq();
- //cerr << loss << " " << step_size << " " << diff << endl;
- if (step_size > max_step_size) step_size = max_step_size;
- lambdas += (cur_good.features * step_size);
- lambdas -= (cur_bad.features * step_size);
- //cerr << "L: " << lambdas << endl;
- }
- }
- tot += lambdas;
- ++normalizer;
- ++lcount;
- ++cur_sent;
- }
- cerr << endl;
- Weights::WriteToFile("weights.mira-final.gz", dense_weights, true, &msg);
- tot /= normalizer;
- tot.init_vector(dense_weights);
- msg = "# MIRA tuned weights (averaged vector)";
- Weights::WriteToFile("weights.mira-final-avg.gz", dense_weights, true, &msg);
- cerr << "Optimization complete.\nAVERAGED WEIGHTS: weights.mira-final-avg.gz\n";
- return 0;
-}
-