diff options
author | Patrick Simianer <p@simianer.de> | 2013-01-21 12:29:43 +0100 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2013-01-21 12:29:43 +0100 |
commit | 50f22047eb1b7f2d60e85cdcf0fcd86342e50523 (patch) | |
tree | 730dabaf2fa57b1e4536d40f036b46795d37f289 /klm/util/double-conversion/bignum.cc | |
parent | 8b399cb09513cd79ed4182be9f75882c1e1b336a (diff) | |
parent | 608886384da40aedfabd629c882b8ea9b3f6348e (diff) |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'klm/util/double-conversion/bignum.cc')
-rw-r--r-- | klm/util/double-conversion/bignum.cc | 764 |
1 files changed, 764 insertions, 0 deletions
diff --git a/klm/util/double-conversion/bignum.cc b/klm/util/double-conversion/bignum.cc new file mode 100644 index 00000000..747491a0 --- /dev/null +++ b/klm/util/double-conversion/bignum.cc @@ -0,0 +1,764 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "bignum.h" +#include "utils.h" + +namespace double_conversion { + +Bignum::Bignum() + : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { + for (int i = 0; i < kBigitCapacity; ++i) { + bigits_[i] = 0; + } +} + + +template<typename S> +static int BitSize(S value) { + return 8 * sizeof(value); +} + +// Guaranteed to lie in one Bigit. +void Bignum::AssignUInt16(uint16_t value) { + ASSERT(kBigitSize >= BitSize(value)); + Zero(); + if (value == 0) return; + + EnsureCapacity(1); + bigits_[0] = value; + used_digits_ = 1; +} + + +void Bignum::AssignUInt64(uint64_t value) { + const int kUInt64Size = 64; + + Zero(); + if (value == 0) return; + + int needed_bigits = kUInt64Size / kBigitSize + 1; + EnsureCapacity(needed_bigits); + for (int i = 0; i < needed_bigits; ++i) { + bigits_[i] = value & kBigitMask; + value = value >> kBigitSize; + } + used_digits_ = needed_bigits; + Clamp(); +} + + +void Bignum::AssignBignum(const Bignum& other) { + exponent_ = other.exponent_; + for (int i = 0; i < other.used_digits_; ++i) { + bigits_[i] = other.bigits_[i]; + } + // Clear the excess digits (if there were any). + for (int i = other.used_digits_; i < used_digits_; ++i) { + bigits_[i] = 0; + } + used_digits_ = other.used_digits_; +} + + +static uint64_t ReadUInt64(Vector<const char> buffer, + int from, + int digits_to_read) { + uint64_t result = 0; + for (int i = from; i < from + digits_to_read; ++i) { + int digit = buffer[i] - '0'; + ASSERT(0 <= digit && digit <= 9); + result = result * 10 + digit; + } + return result; +} + + +void Bignum::AssignDecimalString(Vector<const char> value) { + // 2^64 = 18446744073709551616 > 10^19 + const int kMaxUint64DecimalDigits = 19; + Zero(); + int length = value.length(); + int pos = 0; + // Let's just say that each digit needs 4 bits. + while (length >= kMaxUint64DecimalDigits) { + uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); + pos += kMaxUint64DecimalDigits; + length -= kMaxUint64DecimalDigits; + MultiplyByPowerOfTen(kMaxUint64DecimalDigits); + AddUInt64(digits); + } + uint64_t digits = ReadUInt64(value, pos, length); + MultiplyByPowerOfTen(length); + AddUInt64(digits); + Clamp(); +} + + +static int HexCharValue(char c) { + if ('0' <= c && c <= '9') return c - '0'; + if ('a' <= c && c <= 'f') return 10 + c - 'a'; + if ('A' <= c && c <= 'F') return 10 + c - 'A'; + UNREACHABLE(); + return 0; // To make compiler happy. +} + + +void Bignum::AssignHexString(Vector<const char> value) { + Zero(); + int length = value.length(); + + int needed_bigits = length * 4 / kBigitSize + 1; + EnsureCapacity(needed_bigits); + int string_index = length - 1; + for (int i = 0; i < needed_bigits - 1; ++i) { + // These bigits are guaranteed to be "full". + Chunk current_bigit = 0; + for (int j = 0; j < kBigitSize / 4; j++) { + current_bigit += HexCharValue(value[string_index--]) << (j * 4); + } + bigits_[i] = current_bigit; + } + used_digits_ = needed_bigits - 1; + + Chunk most_significant_bigit = 0; // Could be = 0; + for (int j = 0; j <= string_index; ++j) { + most_significant_bigit <<= 4; + most_significant_bigit += HexCharValue(value[j]); + } + if (most_significant_bigit != 0) { + bigits_[used_digits_] = most_significant_bigit; + used_digits_++; + } + Clamp(); +} + + +void Bignum::AddUInt64(uint64_t operand) { + if (operand == 0) return; + Bignum other; + other.AssignUInt64(operand); + AddBignum(other); +} + + +void Bignum::AddBignum(const Bignum& other) { + ASSERT(IsClamped()); + ASSERT(other.IsClamped()); + + // If this has a greater exponent than other append zero-bigits to this. + // After this call exponent_ <= other.exponent_. + Align(other); + + // There are two possibilities: + // aaaaaaaaaaa 0000 (where the 0s represent a's exponent) + // bbbbb 00000000 + // ---------------- + // ccccccccccc 0000 + // or + // aaaaaaaaaa 0000 + // bbbbbbbbb 0000000 + // ----------------- + // cccccccccccc 0000 + // In both cases we might need a carry bigit. + + EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); + Chunk carry = 0; + int bigit_pos = other.exponent_ - exponent_; + ASSERT(bigit_pos >= 0); + for (int i = 0; i < other.used_digits_; ++i) { + Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; + bigits_[bigit_pos] = sum & kBigitMask; + carry = sum >> kBigitSize; + bigit_pos++; + } + + while (carry != 0) { + Chunk sum = bigits_[bigit_pos] + carry; + bigits_[bigit_pos] = sum & kBigitMask; + carry = sum >> kBigitSize; + bigit_pos++; + } + used_digits_ = Max(bigit_pos, used_digits_); + ASSERT(IsClamped()); +} + + +void Bignum::SubtractBignum(const Bignum& other) { + ASSERT(IsClamped()); + ASSERT(other.IsClamped()); + // We require this to be bigger than other. + ASSERT(LessEqual(other, *this)); + + Align(other); + + int offset = other.exponent_ - exponent_; + Chunk borrow = 0; + int i; + for (i = 0; i < other.used_digits_; ++i) { + ASSERT((borrow == 0) || (borrow == 1)); + Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; + bigits_[i + offset] = difference & kBigitMask; + borrow = difference >> (kChunkSize - 1); + } + while (borrow != 0) { + Chunk difference = bigits_[i + offset] - borrow; + bigits_[i + offset] = difference & kBigitMask; + borrow = difference >> (kChunkSize - 1); + ++i; + } + Clamp(); +} + + +void Bignum::ShiftLeft(int shift_amount) { + if (used_digits_ == 0) return; + exponent_ += shift_amount / kBigitSize; + int local_shift = shift_amount % kBigitSize; + EnsureCapacity(used_digits_ + 1); + BigitsShiftLeft(local_shift); +} + + +void Bignum::MultiplyByUInt32(uint32_t factor) { + if (factor == 1) return; + if (factor == 0) { + Zero(); + return; + } + if (used_digits_ == 0) return; + + // The product of a bigit with the factor is of size kBigitSize + 32. + // Assert that this number + 1 (for the carry) fits into double chunk. + ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); + DoubleChunk carry = 0; + for (int i = 0; i < used_digits_; ++i) { + DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; + bigits_[i] = static_cast<Chunk>(product & kBigitMask); + carry = (product >> kBigitSize); + } + while (carry != 0) { + EnsureCapacity(used_digits_ + 1); + bigits_[used_digits_] = carry & kBigitMask; + used_digits_++; + carry >>= kBigitSize; + } +} + + +void Bignum::MultiplyByUInt64(uint64_t factor) { + if (factor == 1) return; + if (factor == 0) { + Zero(); + return; + } + ASSERT(kBigitSize < 32); + uint64_t carry = 0; + uint64_t low = factor & 0xFFFFFFFF; + uint64_t high = factor >> 32; + for (int i = 0; i < used_digits_; ++i) { + uint64_t product_low = low * bigits_[i]; + uint64_t product_high = high * bigits_[i]; + uint64_t tmp = (carry & kBigitMask) + product_low; + bigits_[i] = tmp & kBigitMask; + carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + + (product_high << (32 - kBigitSize)); + } + while (carry != 0) { + EnsureCapacity(used_digits_ + 1); + bigits_[used_digits_] = carry & kBigitMask; + used_digits_++; + carry >>= kBigitSize; + } +} + + +void Bignum::MultiplyByPowerOfTen(int exponent) { + const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); + const uint16_t kFive1 = 5; + const uint16_t kFive2 = kFive1 * 5; + const uint16_t kFive3 = kFive2 * 5; + const uint16_t kFive4 = kFive3 * 5; + const uint16_t kFive5 = kFive4 * 5; + const uint16_t kFive6 = kFive5 * 5; + const uint32_t kFive7 = kFive6 * 5; + const uint32_t kFive8 = kFive7 * 5; + const uint32_t kFive9 = kFive8 * 5; + const uint32_t kFive10 = kFive9 * 5; + const uint32_t kFive11 = kFive10 * 5; + const uint32_t kFive12 = kFive11 * 5; + const uint32_t kFive13 = kFive12 * 5; + const uint32_t kFive1_to_12[] = + { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, + kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; + + ASSERT(exponent >= 0); + if (exponent == 0) return; + if (used_digits_ == 0) return; + + // We shift by exponent at the end just before returning. + int remaining_exponent = exponent; + while (remaining_exponent >= 27) { + MultiplyByUInt64(kFive27); + remaining_exponent -= 27; + } + while (remaining_exponent >= 13) { + MultiplyByUInt32(kFive13); + remaining_exponent -= 13; + } + if (remaining_exponent > 0) { + MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); + } + ShiftLeft(exponent); +} + + +void Bignum::Square() { + ASSERT(IsClamped()); + int product_length = 2 * used_digits_; + EnsureCapacity(product_length); + + // Comba multiplication: compute each column separately. + // Example: r = a2a1a0 * b2b1b0. + // r = 1 * a0b0 + + // 10 * (a1b0 + a0b1) + + // 100 * (a2b0 + a1b1 + a0b2) + + // 1000 * (a2b1 + a1b2) + + // 10000 * a2b2 + // + // In the worst case we have to accumulate nb-digits products of digit*digit. + // + // Assert that the additional number of bits in a DoubleChunk are enough to + // sum up used_digits of Bigit*Bigit. + if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { + UNIMPLEMENTED(); + } + DoubleChunk accumulator = 0; + // First shift the digits so we don't overwrite them. + int copy_offset = used_digits_; + for (int i = 0; i < used_digits_; ++i) { + bigits_[copy_offset + i] = bigits_[i]; + } + // We have two loops to avoid some 'if's in the loop. + for (int i = 0; i < used_digits_; ++i) { + // Process temporary digit i with power i. + // The sum of the two indices must be equal to i. + int bigit_index1 = i; + int bigit_index2 = 0; + // Sum all of the sub-products. + while (bigit_index1 >= 0) { + Chunk chunk1 = bigits_[copy_offset + bigit_index1]; + Chunk chunk2 = bigits_[copy_offset + bigit_index2]; + accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; + bigit_index1--; + bigit_index2++; + } + bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; + accumulator >>= kBigitSize; + } + for (int i = used_digits_; i < product_length; ++i) { + int bigit_index1 = used_digits_ - 1; + int bigit_index2 = i - bigit_index1; + // Invariant: sum of both indices is again equal to i. + // Inner loop runs 0 times on last iteration, emptying accumulator. + while (bigit_index2 < used_digits_) { + Chunk chunk1 = bigits_[copy_offset + bigit_index1]; + Chunk chunk2 = bigits_[copy_offset + bigit_index2]; + accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; + bigit_index1--; + bigit_index2++; + } + // The overwritten bigits_[i] will never be read in further loop iterations, + // because bigit_index1 and bigit_index2 are always greater + // than i - used_digits_. + bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; + accumulator >>= kBigitSize; + } + // Since the result was guaranteed to lie inside the number the + // accumulator must be 0 now. + ASSERT(accumulator == 0); + + // Don't forget to update the used_digits and the exponent. + used_digits_ = product_length; + exponent_ *= 2; + Clamp(); +} + + +void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { + ASSERT(base != 0); + ASSERT(power_exponent >= 0); + if (power_exponent == 0) { + AssignUInt16(1); + return; + } + Zero(); + int shifts = 0; + // We expect base to be in range 2-32, and most often to be 10. + // It does not make much sense to implement different algorithms for counting + // the bits. + while ((base & 1) == 0) { + base >>= 1; + shifts++; + } + int bit_size = 0; + int tmp_base = base; + while (tmp_base != 0) { + tmp_base >>= 1; + bit_size++; + } + int final_size = bit_size * power_exponent; + // 1 extra bigit for the shifting, and one for rounded final_size. + EnsureCapacity(final_size / kBigitSize + 2); + + // Left to Right exponentiation. + int mask = 1; + while (power_exponent >= mask) mask <<= 1; + + // The mask is now pointing to the bit above the most significant 1-bit of + // power_exponent. + // Get rid of first 1-bit; + mask >>= 2; + uint64_t this_value = base; + + bool delayed_multipliciation = false; + const uint64_t max_32bits = 0xFFFFFFFF; + while (mask != 0 && this_value <= max_32bits) { + this_value = this_value * this_value; + // Verify that there is enough space in this_value to perform the + // multiplication. The first bit_size bits must be 0. + if ((power_exponent & mask) != 0) { + uint64_t base_bits_mask = + ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); + bool high_bits_zero = (this_value & base_bits_mask) == 0; + if (high_bits_zero) { + this_value *= base; + } else { + delayed_multipliciation = true; + } + } + mask >>= 1; + } + AssignUInt64(this_value); + if (delayed_multipliciation) { + MultiplyByUInt32(base); + } + + // Now do the same thing as a bignum. + while (mask != 0) { + Square(); + if ((power_exponent & mask) != 0) { + MultiplyByUInt32(base); + } + mask >>= 1; + } + + // And finally add the saved shifts. + ShiftLeft(shifts * power_exponent); +} + + +// Precondition: this/other < 16bit. +uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { + ASSERT(IsClamped()); + ASSERT(other.IsClamped()); + ASSERT(other.used_digits_ > 0); + + // Easy case: if we have less digits than the divisor than the result is 0. + // Note: this handles the case where this == 0, too. + if (BigitLength() < other.BigitLength()) { + return 0; + } + + Align(other); + + uint16_t result = 0; + + // Start by removing multiples of 'other' until both numbers have the same + // number of digits. + while (BigitLength() > other.BigitLength()) { + // This naive approach is extremely inefficient if the this divided other + // might be big. This function is implemented for doubleToString where + // the result should be small (less than 10). + ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); + // Remove the multiples of the first digit. + // Example this = 23 and other equals 9. -> Remove 2 multiples. + result += bigits_[used_digits_ - 1]; + SubtractTimes(other, bigits_[used_digits_ - 1]); + } + + ASSERT(BigitLength() == other.BigitLength()); + + // Both bignums are at the same length now. + // Since other has more than 0 digits we know that the access to + // bigits_[used_digits_ - 1] is safe. + Chunk this_bigit = bigits_[used_digits_ - 1]; + Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; + + if (other.used_digits_ == 1) { + // Shortcut for easy (and common) case. + int quotient = this_bigit / other_bigit; + bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; + result += quotient; + Clamp(); + return result; + } + + int division_estimate = this_bigit / (other_bigit + 1); + result += division_estimate; + SubtractTimes(other, division_estimate); + + if (other_bigit * (division_estimate + 1) > this_bigit) { + // No need to even try to subtract. Even if other's remaining digits were 0 + // another subtraction would be too much. + return result; + } + + while (LessEqual(other, *this)) { + SubtractBignum(other); + result++; + } + return result; +} + + +template<typename S> +static int SizeInHexChars(S number) { + ASSERT(number > 0); + int result = 0; + while (number != 0) { + number >>= 4; + result++; + } + return result; +} + + +static char HexCharOfValue(int value) { + ASSERT(0 <= value && value <= 16); + if (value < 10) return value + '0'; + return value - 10 + 'A'; +} + + +bool Bignum::ToHexString(char* buffer, int buffer_size) const { + ASSERT(IsClamped()); + // Each bigit must be printable as separate hex-character. + ASSERT(kBigitSize % 4 == 0); + const int kHexCharsPerBigit = kBigitSize / 4; + + if (used_digits_ == 0) { + if (buffer_size < 2) return false; + buffer[0] = '0'; + buffer[1] = '\0'; + return true; + } + // We add 1 for the terminating '\0' character. + int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + + SizeInHexChars(bigits_[used_digits_ - 1]) + 1; + if (needed_chars > buffer_size) return false; + int string_index = needed_chars - 1; + buffer[string_index--] = '\0'; + for (int i = 0; i < exponent_; ++i) { + for (int j = 0; j < kHexCharsPerBigit; ++j) { + buffer[string_index--] = '0'; + } + } + for (int i = 0; i < used_digits_ - 1; ++i) { + Chunk current_bigit = bigits_[i]; + for (int j = 0; j < kHexCharsPerBigit; ++j) { + buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); + current_bigit >>= 4; + } + } + // And finally the last bigit. + Chunk most_significant_bigit = bigits_[used_digits_ - 1]; + while (most_significant_bigit != 0) { + buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); + most_significant_bigit >>= 4; + } + return true; +} + + +Bignum::Chunk Bignum::BigitAt(int index) const { + if (index >= BigitLength()) return 0; + if (index < exponent_) return 0; + return bigits_[index - exponent_]; +} + + +int Bignum::Compare(const Bignum& a, const Bignum& b) { + ASSERT(a.IsClamped()); + ASSERT(b.IsClamped()); + int bigit_length_a = a.BigitLength(); + int bigit_length_b = b.BigitLength(); + if (bigit_length_a < bigit_length_b) return -1; + if (bigit_length_a > bigit_length_b) return +1; + for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { + Chunk bigit_a = a.BigitAt(i); + Chunk bigit_b = b.BigitAt(i); + if (bigit_a < bigit_b) return -1; + if (bigit_a > bigit_b) return +1; + // Otherwise they are equal up to this digit. Try the next digit. + } + return 0; +} + + +int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { + ASSERT(a.IsClamped()); + ASSERT(b.IsClamped()); + ASSERT(c.IsClamped()); + if (a.BigitLength() < b.BigitLength()) { + return PlusCompare(b, a, c); + } + if (a.BigitLength() + 1 < c.BigitLength()) return -1; + if (a.BigitLength() > c.BigitLength()) return +1; + // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than + // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one + // of 'a'. + if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { + return -1; + } + + Chunk borrow = 0; + // Starting at min_exponent all digits are == 0. So no need to compare them. + int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); + for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { + Chunk chunk_a = a.BigitAt(i); + Chunk chunk_b = b.BigitAt(i); + Chunk chunk_c = c.BigitAt(i); + Chunk sum = chunk_a + chunk_b; + if (sum > chunk_c + borrow) { + return +1; + } else { + borrow = chunk_c + borrow - sum; + if (borrow > 1) return -1; + borrow <<= kBigitSize; + } + } + if (borrow == 0) return 0; + return -1; +} + + +void Bignum::Clamp() { + while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { + used_digits_--; + } + if (used_digits_ == 0) { + // Zero. + exponent_ = 0; + } +} + + +bool Bignum::IsClamped() const { + return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; +} + + +void Bignum::Zero() { + for (int i = 0; i < used_digits_; ++i) { + bigits_[i] = 0; + } + used_digits_ = 0; + exponent_ = 0; +} + + +void Bignum::Align(const Bignum& other) { + if (exponent_ > other.exponent_) { + // If "X" represents a "hidden" digit (by the exponent) then we are in the + // following case (a == this, b == other): + // a: aaaaaaXXXX or a: aaaaaXXX + // b: bbbbbbX b: bbbbbbbbXX + // We replace some of the hidden digits (X) of a with 0 digits. + // a: aaaaaa000X or a: aaaaa0XX + int zero_digits = exponent_ - other.exponent_; + EnsureCapacity(used_digits_ + zero_digits); + for (int i = used_digits_ - 1; i >= 0; --i) { + bigits_[i + zero_digits] = bigits_[i]; + } + for (int i = 0; i < zero_digits; ++i) { + bigits_[i] = 0; + } + used_digits_ += zero_digits; + exponent_ -= zero_digits; + ASSERT(used_digits_ >= 0); + ASSERT(exponent_ >= 0); + } +} + + +void Bignum::BigitsShiftLeft(int shift_amount) { + ASSERT(shift_amount < kBigitSize); + ASSERT(shift_amount >= 0); + Chunk carry = 0; + for (int i = 0; i < used_digits_; ++i) { + Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); + bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; + carry = new_carry; + } + if (carry != 0) { + bigits_[used_digits_] = carry; + used_digits_++; + } +} + + +void Bignum::SubtractTimes(const Bignum& other, int factor) { + ASSERT(exponent_ <= other.exponent_); + if (factor < 3) { + for (int i = 0; i < factor; ++i) { + SubtractBignum(other); + } + return; + } + Chunk borrow = 0; + int exponent_diff = other.exponent_ - exponent_; + for (int i = 0; i < other.used_digits_; ++i) { + DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; + DoubleChunk remove = borrow + product; + Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); + bigits_[i + exponent_diff] = difference & kBigitMask; + borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + + (remove >> kBigitSize)); + } + for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { + if (borrow == 0) return; + Chunk difference = bigits_[i] - borrow; + bigits_[i] = difference & kBigitMask; + borrow = difference >> (kChunkSize - 1); + ++i; + } + Clamp(); +} + + +} // namespace double_conversion |