summaryrefslogtreecommitdiff
path: root/klm/lm/model.cc
diff options
context:
space:
mode:
authorredpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-11-10 02:02:04 +0000
committerredpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-11-10 02:02:04 +0000
commit15b03336564d5e57e50693f19dd81b45076af5d4 (patch)
treec2072893a43f4c75f0ad5ebe3080bfa901faf18f /klm/lm/model.cc
parent1336aecfe930546f8836ffe65dd5ff78434084eb (diff)
new version of klm
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@706 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'klm/lm/model.cc')
-rw-r--r--klm/lm/model.cc239
1 files changed, 239 insertions, 0 deletions
diff --git a/klm/lm/model.cc b/klm/lm/model.cc
new file mode 100644
index 00000000..6921d4d9
--- /dev/null
+++ b/klm/lm/model.cc
@@ -0,0 +1,239 @@
+#include "lm/model.hh"
+
+#include "lm/lm_exception.hh"
+#include "lm/search_hashed.hh"
+#include "lm/search_trie.hh"
+#include "lm/read_arpa.hh"
+#include "util/murmur_hash.hh"
+
+#include <algorithm>
+#include <functional>
+#include <numeric>
+#include <cmath>
+
+namespace lm {
+namespace ngram {
+
+size_t hash_value(const State &state) {
+ return util::MurmurHashNative(state.history_, sizeof(WordIndex) * state.valid_length_);
+}
+
+namespace detail {
+
+template <class Search, class VocabularyT> size_t GenericModel<Search, VocabularyT>::Size(const std::vector<uint64_t> &counts, const Config &config) {
+ if (counts.size() > kMaxOrder) UTIL_THROW(FormatLoadException, "This model has order " << counts.size() << ". Edit ngram.hh's kMaxOrder to at least this value and recompile.");
+ if (counts.size() < 2) UTIL_THROW(FormatLoadException, "This ngram implementation assumes at least a bigram model.");
+ return VocabularyT::Size(counts[0], config) + Search::Size(counts, config);
+}
+
+template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::SetupMemory(void *base, const std::vector<uint64_t> &counts, const Config &config) {
+ uint8_t *start = static_cast<uint8_t*>(base);
+ size_t allocated = VocabularyT::Size(counts[0], config);
+ vocab_.SetupMemory(start, allocated, counts[0], config);
+ start += allocated;
+ start = search_.SetupMemory(start, counts, config);
+ if (static_cast<std::size_t>(start - static_cast<uint8_t*>(base)) != Size(counts, config)) UTIL_THROW(FormatLoadException, "The data structures took " << (start - static_cast<uint8_t*>(base)) << " but Size says they should take " << Size(counts, config));
+}
+
+template <class Search, class VocabularyT> GenericModel<Search, VocabularyT>::GenericModel(const char *file, const Config &config) {
+ LoadLM(file, config, *this);
+
+ // g++ prints warnings unless these are fully initialized.
+ State begin_sentence = State();
+ begin_sentence.valid_length_ = 1;
+ begin_sentence.history_[0] = vocab_.BeginSentence();
+ begin_sentence.backoff_[0] = search_.unigram.Lookup(begin_sentence.history_[0]).backoff;
+ State null_context = State();
+ null_context.valid_length_ = 0;
+ P::Init(begin_sentence, null_context, vocab_, search_.middle.size() + 2);
+}
+
+template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::InitializeFromBinary(void *start, const Parameters &params, const Config &config, int fd) {
+ SetupMemory(start, params.counts, config);
+ vocab_.LoadedBinary(fd, config.enumerate_vocab);
+ search_.unigram.LoadedBinary();
+ for (typename std::vector<Middle>::iterator i = search_.middle.begin(); i != search_.middle.end(); ++i) {
+ i->LoadedBinary();
+ }
+ search_.longest.LoadedBinary();
+}
+
+template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::InitializeFromARPA(const char *file, util::FilePiece &f, void *start, const Parameters &params, const Config &config) {
+ SetupMemory(start, params.counts, config);
+
+ if (config.write_mmap) {
+ WriteWordsWrapper wrap(config.enumerate_vocab, backing_.file.get());
+ vocab_.ConfigureEnumerate(&wrap, params.counts[0]);
+ search_.InitializeFromARPA(file, f, params.counts, config, vocab_);
+ } else {
+ vocab_.ConfigureEnumerate(config.enumerate_vocab, params.counts[0]);
+ search_.InitializeFromARPA(file, f, params.counts, config, vocab_);
+ }
+ // TODO: fail faster?
+ if (!vocab_.SawUnk()) {
+ switch(config.unknown_missing) {
+ case Config::THROW_UP:
+ {
+ SpecialWordMissingException e("<unk>");
+ e << " and configuration was set to throw if unknown is missing";
+ throw e;
+ }
+ case Config::COMPLAIN:
+ if (config.messages) *config.messages << "Language model is missing <unk>. Substituting probability " << config.unknown_missing_prob << "." << std::endl;
+ // There's no break;. This is by design.
+ case Config::SILENT:
+ // Default probabilities for unknown.
+ search_.unigram.Unknown().backoff = 0.0;
+ search_.unigram.Unknown().prob = config.unknown_missing_prob;
+ break;
+ }
+ }
+ if (std::fabs(search_.unigram.Unknown().backoff) > 0.0000001) UTIL_THROW(FormatLoadException, "Backoff for unknown word should be zero, but was given as " << search_.unigram.Unknown().backoff);
+}
+
+template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScore(const State &in_state, const WordIndex new_word, State &out_state) const {
+ unsigned char backoff_start;
+ FullScoreReturn ret = ScoreExceptBackoff(in_state.history_, in_state.history_ + in_state.valid_length_, new_word, backoff_start, out_state);
+ if (backoff_start - 1 < in_state.valid_length_) {
+ ret.prob = std::accumulate(in_state.backoff_ + backoff_start - 1, in_state.backoff_ + in_state.valid_length_, ret.prob);
+ }
+ return ret;
+}
+
+template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const {
+ unsigned char backoff_start;
+ context_rend = std::min(context_rend, context_rbegin + P::Order() - 1);
+ FullScoreReturn ret = ScoreExceptBackoff(context_rbegin, context_rend, new_word, backoff_start, out_state);
+ ret.prob += SlowBackoffLookup(context_rbegin, context_rend, backoff_start);
+ return ret;
+}
+
+template <class Search, class VocabularyT> void GenericModel<Search, VocabularyT>::GetState(const WordIndex *context_rbegin, const WordIndex *context_rend, State &out_state) const {
+ context_rend = std::min(context_rend, context_rbegin + P::Order() - 1);
+ if (context_rend == context_rbegin || *context_rbegin == 0) {
+ out_state.valid_length_ = 0;
+ return;
+ }
+ float ignored_prob;
+ typename Search::Node node;
+ search_.LookupUnigram(*context_rbegin, ignored_prob, out_state.backoff_[0], node);
+ float *backoff_out = out_state.backoff_ + 1;
+ const WordIndex *i = context_rbegin + 1;
+ for (; i < context_rend; ++i, ++backoff_out) {
+ if (!search_.LookupMiddleNoProb(search_.middle[i - context_rbegin - 1], *i, *backoff_out, node)) {
+ out_state.valid_length_ = i - context_rbegin;
+ std::copy(context_rbegin, i, out_state.history_);
+ return;
+ }
+ }
+ std::copy(context_rbegin, context_rend, out_state.history_);
+ out_state.valid_length_ = static_cast<unsigned char>(context_rend - context_rbegin);
+}
+
+template <class Search, class VocabularyT> float GenericModel<Search, VocabularyT>::SlowBackoffLookup(
+ const WordIndex *const context_rbegin, const WordIndex *const context_rend, unsigned char start) const {
+ // Add the backoff weights for n-grams of order start to (context_rend - context_rbegin).
+ if (context_rend - context_rbegin < static_cast<std::ptrdiff_t>(start)) return 0.0;
+ float ret = 0.0;
+ if (start == 1) {
+ ret += search_.unigram.Lookup(*context_rbegin).backoff;
+ start = 2;
+ }
+ typename Search::Node node;
+ if (!search_.FastMakeNode(context_rbegin, context_rbegin + start - 1, node)) {
+ return 0.0;
+ }
+ float backoff;
+ // i is the order of the backoff we're looking for.
+ for (const WordIndex *i = context_rbegin + start - 1; i < context_rend; ++i) {
+ if (!search_.LookupMiddleNoProb(search_.middle[i - context_rbegin - 1], *i, backoff, node)) break;
+ ret += backoff;
+ }
+ return ret;
+}
+
+/* Ugly optimized function. Produce a score excluding backoff.
+ * The search goes in increasing order of ngram length.
+ * Context goes backward, so context_begin is the word immediately preceeding
+ * new_word.
+ */
+template <class Search, class VocabularyT> FullScoreReturn GenericModel<Search, VocabularyT>::ScoreExceptBackoff(
+ const WordIndex *context_rbegin,
+ const WordIndex *context_rend,
+ const WordIndex new_word,
+ unsigned char &backoff_start,
+ State &out_state) const {
+ FullScoreReturn ret;
+ typename Search::Node node;
+ float *backoff_out(out_state.backoff_);
+ search_.LookupUnigram(new_word, ret.prob, *backoff_out, node);
+ if (new_word == 0) {
+ ret.ngram_length = out_state.valid_length_ = 0;
+ // All of backoff.
+ backoff_start = 1;
+ return ret;
+ }
+ out_state.history_[0] = new_word;
+ if (context_rbegin == context_rend) {
+ ret.ngram_length = out_state.valid_length_ = 1;
+ // No backoff because we don't have the history for it.
+ backoff_start = P::Order();
+ return ret;
+ }
+ ++backoff_out;
+
+ // Ok now we now that the bigram contains known words. Start by looking it up.
+
+ const WordIndex *hist_iter = context_rbegin;
+ typename std::vector<Middle>::const_iterator mid_iter = search_.middle.begin();
+ for (; ; ++mid_iter, ++hist_iter, ++backoff_out) {
+ if (hist_iter == context_rend) {
+ // Ran out of history. No backoff.
+ backoff_start = P::Order();
+ std::copy(context_rbegin, context_rend, out_state.history_ + 1);
+ ret.ngram_length = out_state.valid_length_ = (context_rend - context_rbegin) + 1;
+ // ret.prob was already set.
+ return ret;
+ }
+
+ if (mid_iter == search_.middle.end()) break;
+
+ if (!search_.LookupMiddle(*mid_iter, *hist_iter, ret.prob, *backoff_out, node)) {
+ // Didn't find an ngram using hist_iter.
+ // The history used in the found n-gram is [context_rbegin, hist_iter).
+ std::copy(context_rbegin, hist_iter, out_state.history_ + 1);
+ // Therefore, we found a (hist_iter - context_rbegin + 1)-gram including the last word.
+ ret.ngram_length = out_state.valid_length_ = (hist_iter - context_rbegin) + 1;
+ backoff_start = mid_iter - search_.middle.begin() + 1;
+ // ret.prob was already set.
+ return ret;
+ }
+ }
+
+ // It passed every lookup in search_.middle. That means it's at least a (P::Order() - 1)-gram.
+ // All that's left is to check search_.longest.
+
+ if (!search_.LookupLongest(*hist_iter, ret.prob, node)) {
+ // It's an (P::Order()-1)-gram
+ std::copy(context_rbegin, context_rbegin + P::Order() - 2, out_state.history_ + 1);
+ ret.ngram_length = out_state.valid_length_ = P::Order() - 1;
+ backoff_start = P::Order() - 1;
+ // ret.prob was already set.
+ return ret;
+ }
+ // It's an P::Order()-gram
+ // out_state.valid_length_ is still P::Order() - 1 because the next lookup will only need that much.
+ std::copy(context_rbegin, context_rbegin + P::Order() - 2, out_state.history_ + 1);
+ out_state.valid_length_ = P::Order() - 1;
+ ret.ngram_length = P::Order();
+ backoff_start = P::Order();
+ return ret;
+}
+
+template class GenericModel<ProbingHashedSearch, ProbingVocabulary>;
+template class GenericModel<SortedHashedSearch, SortedVocabulary>;
+template class GenericModel<trie::TrieSearch, SortedVocabulary>;
+
+} // namespace detail
+} // namespace ngram
+} // namespace lm