summaryrefslogtreecommitdiff
path: root/gi/pyp-topics/src/gammadist.c
diff options
context:
space:
mode:
authorphilblunsom@gmail.com <philblunsom@gmail.com@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-06-22 20:34:00 +0000
committerphilblunsom@gmail.com <philblunsom@gmail.com@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-06-22 20:34:00 +0000
commitefe0d24fa7dbca47825638a52f51977456153bd0 (patch)
tree77c1d68ae29e423e1baaca6565a2455ec481955c /gi/pyp-topics/src/gammadist.c
parent42e1e2cb20c8f31d9a27bf0be5fe0846f3dde413 (diff)
Initial ci of gi dir
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@5 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'gi/pyp-topics/src/gammadist.c')
-rw-r--r--gi/pyp-topics/src/gammadist.c247
1 files changed, 247 insertions, 0 deletions
diff --git a/gi/pyp-topics/src/gammadist.c b/gi/pyp-topics/src/gammadist.c
new file mode 100644
index 00000000..4e260db8
--- /dev/null
+++ b/gi/pyp-topics/src/gammadist.c
@@ -0,0 +1,247 @@
+/* gammadist.c -- computes probability of samples under / produces samples from a Gamma distribution
+ *
+ * Mark Johnson, 22nd March 2008
+ *
+ * WARNING: you need to set the flag -std=c99 to compile
+ *
+ * gammavariate() was translated from random.py in Python library
+ *
+ * The Gamma distribution is:
+ *
+ * Gamma(x | alpha, beta) = pow(x/beta, alpha-1) * exp(-x/beta) / (gamma(alpha)*beta)
+ *
+ * shape parameter alpha > 0 (also called c), scale parameter beta > 0 (also called s);
+ * mean is alpha*beta, variance is alpha*beta**2
+ *
+ * Note that many parameterizations of the Gamma function are in terms of an _inverse_
+ * scale parameter beta, which is the inverse of the beta given here.
+ *
+ * To define a main() that tests the routines, uncomment the following #define:
+ */
+/* #define GAMMATEST */
+
+#include <assert.h>
+#include <math.h>
+
+#include "gammadist.h"
+#include "mt19937ar.h"
+
+/* gammadist() returns the probability density of x under a Gamma(alpha,beta)
+ * distribution
+ */
+
+long double gammadist(long double x, long double alpha, long double beta) {
+ assert(alpha > 0);
+ assert(beta > 0);
+ return pow(x/beta, alpha-1) * exp(-x/beta) / (tgamma(alpha)*beta);
+}
+
+/* lgammadist() returns the log probability density of x under a Gamma(alpha,beta)
+ * distribution
+ */
+
+long double lgammadist(long double x, long double alpha, long double beta) {
+ assert(alpha > 0);
+ assert(beta > 0);
+ return (alpha-1)*log(x) - alpha*log(beta) - x/beta - lgamma(alpha);
+}
+
+/* This definition of gammavariate is from Python code in
+ * the Python random module.
+ */
+
+long double gammavariate(long double alpha, long double beta) {
+
+ assert(alpha > 0);
+ assert(beta > 0);
+
+ if (alpha > 1.0) {
+
+ /* Uses R.C.H. Cheng, "The generation of Gamma variables with
+ non-integral shape parameters", Applied Statistics, (1977), 26,
+ No. 1, p71-74 */
+
+ long double ainv = sqrt(2.0 * alpha - 1.0);
+ long double bbb = alpha - log(4.0);
+ long double ccc = alpha + ainv;
+
+ while (1) {
+ long double u1 = mt_genrand_real3();
+ if (u1 > 1e-7 || u1 < 0.9999999) {
+ long double u2 = 1.0 - mt_genrand_real3();
+ long double v = log(u1/(1.0-u1))/ainv;
+ long double x = alpha*exp(v);
+ long double z = u1*u1*u2;
+ long double r = bbb+ccc*v-x;
+ if (r + (1.0+log(4.5)) - 4.5*z >= 0.0 || r >= log(z))
+ return x * beta;
+ }
+ }
+ }
+ else if (alpha == 1.0) {
+ long double u = mt_genrand_real3();
+ while (u <= 1e-7)
+ u = mt_genrand_real3();
+ return -log(u) * beta;
+ }
+ else {
+ /* alpha is between 0 and 1 (exclusive)
+ Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle */
+
+ while (1) {
+ long double u = mt_genrand_real3();
+ long double b = (exp(1) + alpha)/exp(1);
+ long double p = b*u;
+ long double x = (p <= 1.0) ? pow(p, 1.0/alpha) : -log((b-p)/alpha);
+ long double u1 = mt_genrand_real3();
+ if (! (((p <= 1.0) && (u1 > exp(-x))) ||
+ ((p > 1.0) && (u1 > pow(x, alpha - 1.0)))))
+ return x * beta;
+ }
+ }
+}
+
+/* betadist() returns the probability density of x under a Beta(alpha,beta)
+ * distribution.
+ */
+
+long double betadist(long double x, long double alpha, long double beta) {
+ assert(x >= 0);
+ assert(x <= 1);
+ assert(alpha > 0);
+ assert(beta > 0);
+ return pow(x,alpha-1)*pow(1-x,beta-1)*tgamma(alpha+beta)/(tgamma(alpha)*tgamma(beta));
+}
+
+/* lbetadist() returns the log probability density of x under a Beta(alpha,beta)
+ * distribution.
+ */
+
+long double lbetadist(long double x, long double alpha, long double beta) {
+ assert(x > 0);
+ assert(x < 1);
+ assert(alpha > 0);
+ assert(beta > 0);
+ return (alpha-1)*log(x)+(beta-1)*log(1-x)+lgamma(alpha+beta)-lgamma(alpha)-lgamma(beta);
+}
+
+/* betavariate() generates a sample from a Beta distribution with
+ * parameters alpha and beta.
+ *
+ * 0 < alpha < 1, 0 < beta < 1, mean is alpha/(alpha+beta)
+ */
+
+long double betavariate(long double alpha, long double beta) {
+ long double x = gammavariate(alpha, 1);
+ long double y = gammavariate(beta, 1);
+ return x/(x+y);
+}
+
+#ifdef GAMMATEST
+#include <stdio.h>
+
+int main(int argc, char **argv) {
+ int iteration, niterations = 1000;
+
+ for (iteration = 0; iteration < niterations; ++iteration) {
+ long double alpha = 100*mt_genrand_real3();
+ long double gv = gammavariate(alpha, 1);
+ long double pgv = gammadist(gv, alpha, 1);
+ long double pgvl = exp(lgammadist(gv, alpha, 1));
+ fprintf(stderr, "iteration = %d, gammavariate(%lg,1) = %lg, gammadist(%lg,%lg,1) = %lg, exp(lgammadist(%lg,%lg,1) = %lg\n",
+ iteration, alpha, gv, gv, alpha, pgv, gv, alpha, pgvl);
+ }
+ return 0;
+}
+
+#endif /* GAMMATEST */
+
+
+/* Other routines I tried, but which weren't as good as the ones above */
+
+#if 0
+
+/*! gammavariate() returns samples from a Gamma distribution
+ *! where alpha is the shape parameter and beta is the scale
+ *! parameter, using the algorithm described on p. 94 of
+ *! Gentle (1998) Random Number Generation and Monte Carlo Methods,
+ *! Springer.
+ */
+
+long double gammavariate(long double alpha) {
+
+ assert(alpha > 0);
+
+ if (alpha > 1.0) {
+ while (1) {
+ long double u1 = mt_genrand_real3();
+ long double u2 = mt_genrand_real3();
+ long double v = (alpha - 1/(6*alpha))*u1/(alpha-1)*u2;
+ if (2*(u2-1)/(alpha-1) + v + 1/v <= 2
+ || 2*log(u2)/(alpha-1) - log(v) + v <= 1)
+ return (alpha-1)*v;
+ }
+ } else if (alpha < 1.0) {
+ while (1) {
+ long double t = 0.07 + 0.75*sqrt(1-alpha);
+ long double b = alpha + exp(-t)*alpha/t;
+ long double u1 = mt_genrand_real3();
+ long double u2 = mt_genrand_real3();
+ long double v = b*u1;
+ if (v <= 1) {
+ long double x = t*pow(v, 1/alpha);
+ if (u2 <= (2 - x)/(2 + x))
+ return x;
+ if (u2 <= exp(-x))
+ return x;
+ }
+ else {
+ long double x = log(t*(b-v)/alpha);
+ long double y = x/t;
+ if (u2*(alpha + y*(1-alpha)) <= 1)
+ return x;
+ if (u2 <= pow(y,alpha-1))
+ return x;
+ }
+ }
+ }
+ else
+ return -log(mt_genrand_real3());
+}
+
+
+/*! gammavariate() returns a deviate distributed as a gamma
+ *! distribution of order alpha, beta, i.e., a waiting time to the alpha'th
+ *! event in a Poisson process of unit mean.
+ *!
+ *! Code from Numerical Recipes
+ */
+
+long double nr_gammavariate(long double ia) {
+ int j;
+ long double am,e,s,v1,v2,x,y;
+ assert(ia > 0);
+ if (ia < 10) {
+ x=1.0;
+ for (j=1;j<=ia;j++)
+ x *= mt_genrand_real3();
+ x = -log(x);
+ } else {
+ do {
+ do {
+ do {
+ v1=mt_genrand_real3();
+ v2=2.0*mt_genrand_real3()-1.0;
+ } while (v1*v1+v2*v2 > 1.0);
+ y=v2/v1;
+ am=ia-1;
+ s=sqrt(2.0*am+1.0);
+ x=s*y+am;
+ } while (x <= 0.0);
+ e=(1.0+y*y)*exp(am*log(x/am)-s*y);
+ } while (mt_genrand_real3() > e);
+ }
+ return x;
+}
+
+#endif