diff options
author | Chris Dyer <cdyer@cab.ark.cs.cmu.edu> | 2012-10-02 00:19:43 -0400 |
---|---|---|
committer | Chris Dyer <cdyer@cab.ark.cs.cmu.edu> | 2012-10-02 00:19:43 -0400 |
commit | 925087356b853e2099c1b60d8b757d7aa02121a9 (patch) | |
tree | 579925c5c9d3da51f43018a5c6d1c4dfbb72b089 /gi/pyp-topics/scripts | |
parent | ea79e535d69f6854d01c62e3752971fb6730d8e7 (diff) |
cdec cleanup, remove bayesian stuff, parsing stuff
Diffstat (limited to 'gi/pyp-topics/scripts')
-rwxr-xr-x | gi/pyp-topics/scripts/contexts2documents.py | 37 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/extract_contexts.py | 144 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/extract_contexts_test.py | 72 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/extract_leaves.py | 49 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/map-documents.py | 20 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/map-terms.py | 20 | ||||
-rw-r--r-- | gi/pyp-topics/scripts/run.sh | 13 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/score-mkcls.py | 61 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/score-topics.py | 64 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/spans2labels.py | 137 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/tokens2classes.py | 27 | ||||
-rwxr-xr-x | gi/pyp-topics/scripts/topics.py | 20 |
12 files changed, 0 insertions, 664 deletions
diff --git a/gi/pyp-topics/scripts/contexts2documents.py b/gi/pyp-topics/scripts/contexts2documents.py deleted file mode 100755 index 9be4ebbb..00000000 --- a/gi/pyp-topics/scripts/contexts2documents.py +++ /dev/null @@ -1,37 +0,0 @@ -#!/usr/bin/python - -import sys -from operator import itemgetter - -if len(sys.argv) > 3: - print "Usage: contexts2documents.py [contexts_index_out] [phrases_index_out]" - exit(1) - -context_index = {} -phrase_index = {} -for line in sys.stdin: - phrase, line_tail = line.split('\t') - - raw_contexts = line_tail.split('|||') - contexts = [c.strip() for x,c in enumerate(raw_contexts) if x%2 == 0] - counts = [int(c.split('=')[1].strip()) for x,c in enumerate(raw_contexts) if x%2 != 0] - phrase_index.setdefault(phrase, len(phrase_index)) - print len(contexts), - for context,count in zip(contexts,counts): - c = context_index.setdefault(context, len(context_index)) - print "%d:%d" % (c,count), - print -if 1 < len(sys.argv) < 4: - contexts_out = open(sys.argv[1],'w') - contexts = context_index.items() - contexts.sort(key = itemgetter(1)) - for context in contexts: - print >>contexts_out, context[0] - contexts_out.close() -if len(sys.argv) == 3: - phrases_out = open(sys.argv[2],'w') - phrases = phrase_index.items() - phrases.sort(key = itemgetter(1)) - for phrase in phrases: - print >>phrases_out, phrase[0] - phrases_out.close() diff --git a/gi/pyp-topics/scripts/extract_contexts.py b/gi/pyp-topics/scripts/extract_contexts.py deleted file mode 100755 index b2723f2a..00000000 --- a/gi/pyp-topics/scripts/extract_contexts.py +++ /dev/null @@ -1,144 +0,0 @@ -#!/usr/bin/python - -import sys,collections - -def extract_backoff(context_list, order): - assert len(context_list) == (2*order) - backoffs = [] - for i in range(1,order+1): - if i == order: - backoffs.append(([context_list[i-1]+"|"], ["|"+context_list[i]])) - else: - right_limit = 2*order-i - core = context_list[i:right_limit] - left = [context_list[i-1]+"|"*(order-i+1)] - right = ["|"*(order-i+1)+context_list[right_limit]] - backoffs.append((core, left, right)) -# print context_list, backoffs - return backoffs - -def tuple_to_str(t): - s="" - for i,x in enumerate(t): - if i > 0: s += "|" - s += str(x) - return s - -if len(sys.argv) < 3: - print "Usage: extract-contexts.py output_filename order cutoff lowercase" - exit(1) - -output_filename = sys.argv[1] -order = int(sys.argv[2]) -cutoff = 0 -if len(sys.argv) > 3: - cutoff = int(sys.argv[3]) -lowercase = False -if len(sys.argv) > 4: - lowercase = bool(sys.argv[4]) - -contexts_dict={} -contexts_list=[] -contexts_freq=collections.defaultdict(int) -contexts_backoff={} - -token_dict={} -token_list=[] -documents_dict=collections.defaultdict(dict) - -contexts_at_order = [i for i in range(order+1)] - -prefix = ["<s%d>|<s>"%i for i in range(order)] -suffix = ["</s%d>|</s>"%i for i in range(order)] - -for line in sys.stdin: - tokens = list(prefix) - tokens.extend(line.split()) - tokens.extend(suffix) - if lowercase: - tokens = map(lambda x: x.lower(), tokens) - - for i in range(order, len(tokens)-order): - context_list = [] - term="" - for j in range(i-order, i+order+1): - token,tag = tokens[j].rsplit('|',2) - if j != i: - context_list.append(token) - else: - if token not in token_dict: - token_dict[token] = len(token_dict) - token_list.append(token) - term = token_dict[token] - - context = tuple_to_str(tuple(context_list)) - - if context not in contexts_dict: - context_index = len(contexts_dict) - contexts_dict[context] = context_index - contexts_list.append(context) - contexts_at_order[0] += 1 - - # handle backoff - backoff_contexts = extract_backoff(context_list, order) - bo_indexes=[(context_index,)] -# bo_indexes=[(context,)] - for i,bo in enumerate(backoff_contexts): - factor_indexes=[] - for factor in bo: - bo_tuple = tuple_to_str(tuple(factor)) - if bo_tuple not in contexts_dict: - contexts_dict[bo_tuple] = len(contexts_dict) - contexts_list.append(bo_tuple) - contexts_at_order[i+1] += 1 -# factor_indexes.append(bo_tuple) - factor_indexes.append(contexts_dict[bo_tuple]) - bo_indexes.append(tuple(factor_indexes)) - - for i in range(len(bo_indexes)-1): - contexts_backoff[bo_indexes[i][0]] = bo_indexes[i+1] - - context_index = contexts_dict[context] - contexts_freq[context_index] += 1 - - if context_index not in documents_dict[term]: - documents_dict[term][context_index] = 1 - else: - documents_dict[term][context_index] += 1 - -term_file = open(output_filename+".terms",'w') -for t in token_list: print >>term_file, t -term_file.close() - -contexts_file = open(output_filename+".contexts",'w') -for c in contexts_list: - print >>contexts_file, c -contexts_file.close() - -data_file = open(output_filename+".data",'w') -for t in range(len(token_list)): - line="" - num_active=0 - for c in documents_dict[t]: - count = documents_dict[t][c] - if contexts_freq[c] >= cutoff: - line += (' ' + str(c) + ':' + str(count)) - num_active += 1 - if num_active > 0: - print >>data_file, "%d%s" % (num_active,line) -data_file.close() - -contexts_backoff_file = open(output_filename+".contexts_backoff",'w') -print >>contexts_backoff_file, len(contexts_list), order, -#for x in contexts_at_order: -# print >>contexts_backoff_file, x, -#print >>contexts_backoff_file -for x in range(order-1): - print >>contexts_backoff_file, 3, -print >>contexts_backoff_file, 2 - -for x in contexts_backoff: - print >>contexts_backoff_file, x, - for y in contexts_backoff[x]: print >>contexts_backoff_file, y, - print >>contexts_backoff_file -contexts_backoff_file.close() diff --git a/gi/pyp-topics/scripts/extract_contexts_test.py b/gi/pyp-topics/scripts/extract_contexts_test.py deleted file mode 100755 index 693b6e0b..00000000 --- a/gi/pyp-topics/scripts/extract_contexts_test.py +++ /dev/null @@ -1,72 +0,0 @@ -#!/usr/bin/python - -import sys,collections - -def tuple_to_str(t): - s="" - for i,x in enumerate(t): - if i > 0: s += "|" - s += str(x) - return s - -if len(sys.argv) < 5: - print "Usage: extract-contexts_test.py output_filename vocab contexts order lowercase" - exit(1) - -output_filename = sys.argv[1] -output = open(output_filename+".test_data",'w') - -unk_term="-UNK-" -vocab_dict={} -for i,x in enumerate(file(sys.argv[2], 'r').readlines()): - vocab_dict[x.strip()]=i - -contexts_dict={} -contexts_list=[] -for i,x in enumerate(file(sys.argv[3], 'r').readlines()): - contexts_dict[x.strip()]=i - contexts_list.append(x.strip()) - -order = int(sys.argv[4]) - -lowercase = False -if len(sys.argv) > 5: - lowercase = bool(sys.argv[5]) -if lowercase: unk_term = unk_term.lower() - -prefix = ["<s%d>|<s>"%i for i in range(order)] -suffix = ["</s%d>|</s>"%i for i in range(order)] - -assert unk_term in vocab_dict -for line in sys.stdin: - tokens = list(prefix) - tokens.extend(line.split()) - tokens.extend(suffix) - if lowercase: - tokens = map(lambda x: x.lower(), tokens) - - for i in range(order, len(tokens)-order): - context_list=[] - term="" - for j in range(i-order, i+order+1): - token,tag = tokens[j].rsplit('|',2) - if j != i: - context_list.append(token) - else: - if token not in vocab_dict: - term = vocab_dict[unk_term] - else: - term = vocab_dict[token] - context = tuple_to_str(context_list) - if context not in contexts_dict: - contexts_dict[context] = len(contexts_dict) - contexts_list.append(context) - context_index = contexts_dict[context] - print >>output, "%d:%d" % (term,context_index), - print >>output -output.close() - -contexts_file = open(output_filename+".test_contexts",'w') -for c in contexts_list: - print >>contexts_file, c -contexts_file.close() diff --git a/gi/pyp-topics/scripts/extract_leaves.py b/gi/pyp-topics/scripts/extract_leaves.py deleted file mode 100755 index 14783b36..00000000 --- a/gi/pyp-topics/scripts/extract_leaves.py +++ /dev/null @@ -1,49 +0,0 @@ -#!/usr/bin/python - -import nltk -import nltk.probability -import sys -import getopt - -lexicalise=False -rm_traces=False -cutoff=100 -length_cutoff=10000 -try: - opts, args = getopt.getopt(sys.argv[1:], "hs:c:l", ["help", "lexicalise", "cutoff","sentence-length","remove-traces"]) -except getopt.GetoptError: - print "Usage: extract_leaves.py [-lsc]" - sys.exit(2) -for opt, arg in opts: - if opt in ("-h", "--help"): - print "Usage: extract_leaves.py [-lsc]" - sys.exit() - elif opt in ("-l", "--lexicalise"): - lexicalise = True - elif opt in ("-c", "--cutoff"): - cutoff = int(arg) - elif opt in ("-s", "--sentence-length"): - length_cutoff = int(arg) - elif opt in ("--remove-traces"): - rm_traces = True - -token_freq = nltk.probability.FreqDist() -lines = [] -for line in sys.stdin: - t = nltk.Tree.parse(line) - pos = t.pos() - if len(pos) <= length_cutoff: - lines.append(pos) - for token, tag in pos: - token_freq.inc(token) - -for line in lines: - for token,tag in line: - if not (rm_traces and tag == "-NONE-"): - if lexicalise: - if token_freq[token] < cutoff: - token = '-UNK-' - print '%s|%s' % (token,tag), - else: - print '%s' % tag, - print diff --git a/gi/pyp-topics/scripts/map-documents.py b/gi/pyp-topics/scripts/map-documents.py deleted file mode 100755 index 703de312..00000000 --- a/gi/pyp-topics/scripts/map-documents.py +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/python - -import sys - -if len(sys.argv) != 2: - print "Usage: map-documents.py vocab-file" - exit(1) - -vocab = file(sys.argv[1], 'r').readlines() -term_dict = map(lambda x: x.strip(), vocab) - -for line in sys.stdin: - tokens = line.split() - for token in tokens: - elements = token.split(':') - if len(elements) == 1: - print "%s" % (term_dict[int(elements[0])]), - else: - print "%s:%s" % (term_dict[int(elements[0])], elements[1]), - print diff --git a/gi/pyp-topics/scripts/map-terms.py b/gi/pyp-topics/scripts/map-terms.py deleted file mode 100755 index eb0298d7..00000000 --- a/gi/pyp-topics/scripts/map-terms.py +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/python - -import sys - -if len(sys.argv) != 2: - print "Usage: map-terms.py vocab-file" - exit(1) - -vocab = file(sys.argv[1], 'r').readlines() -term_dict = map(lambda x: x.strip().replace(' ','_'), vocab) - -for line in sys.stdin: - tokens = line.split() - for token in tokens: - elements = token.split(':') - if len(elements) == 1: - print "%s" % (term_dict[int(elements[0])]), - else: - print "%s:%s" % (term_dict[int(elements[0])], elements[1]), - print diff --git a/gi/pyp-topics/scripts/run.sh b/gi/pyp-topics/scripts/run.sh deleted file mode 100644 index 19e625b1..00000000 --- a/gi/pyp-topics/scripts/run.sh +++ /dev/null @@ -1,13 +0,0 @@ -#!/bin/sh - - -./simple-extract-context.sh ~/workspace/clsp2010/jhuws2010/data/btec/split.zh-en.al 1 | ~/workspace/pyp-topics/scripts/contexts2documents.py > split.zh-en.data - -~/workspace/pyp-topics/bin/pyp-topics-train -d split.zh-en.data -t 50 -s 100 -o split.zh-en.documents.gz -w split.zh-en.topics.gz -gunzip split.zh-en.documents.gz - -~/workspace/cdec/extools/extractor -i ../jhuws2010/data/btec/split.zh-en.al -S 1 -c 500000 -L 12 --base_phrase_spans | ~/workspace/pyp-topics/scripts/spans2labels.py split.zh-en.phrases split.zh-en.contexts split.zh-en.documents > corpus.zh-en.labelled_spans - -paste -d " " ~/workspace/clsp2010/jhuws2010/data/btec/split.zh-en.al corpus.labelled_spans > split.zh-en.labelled_spans - -./simple-extract.sh ~/workspace/clsp2010/scratch/split.zh-en.labelled_spans diff --git a/gi/pyp-topics/scripts/score-mkcls.py b/gi/pyp-topics/scripts/score-mkcls.py deleted file mode 100755 index 6bd33fc5..00000000 --- a/gi/pyp-topics/scripts/score-mkcls.py +++ /dev/null @@ -1,61 +0,0 @@ -#!/usr/bin/python - -import sys -from collections import defaultdict - -def dict_max(d): - max_val=-1 - max_key=None - for k in d: - if d[k] > max_val: - max_val = d[k] - max_key = k - assert max_key - return max_key - -if len(sys.argv) != 3: - print "Usage: score-mkcls.py gold classes" - exit(1) - -gold_file=open(sys.argv[1],'r') - -term_to_topics = {} -for line in open(sys.argv[2],'r'): - term,cls = line.split() - term_to_topics[term] = cls - -gold_to_topics = defaultdict(dict) -topics_to_gold = defaultdict(dict) - -for gold_line in gold_file: - gold_tokens = gold_line.split() - for gold_token in gold_tokens: - gold_term,gold_tag = gold_token.rsplit('|',1) - pred_token = term_to_topics[gold_term] - gold_to_topics[gold_tag][pred_token] \ - = gold_to_topics[gold_tag].get(pred_token, 0) + 1 - topics_to_gold[pred_token][gold_tag] \ - = topics_to_gold[pred_token].get(gold_tag, 0) + 1 - -pred=0 -correct=0 -gold_file=open(sys.argv[1],'r') -for gold_line in gold_file: - gold_tokens = gold_line.split() - - for gold_token in gold_tokens: - gold_term,gold_tag = gold_token.rsplit('|',1) - pred_token = term_to_topics[gold_term] - print "%s|%s|%s" % (gold_token, pred_token, dict_max(topics_to_gold[pred_token])), - pred += 1 - if gold_tag == dict_max(topics_to_gold[pred_token]): - correct += 1 - print -print >>sys.stderr, "Many-to-One Accuracy = %f" % (float(correct) / pred) -#for x in gold_to_topics: -# print x,dict_max(gold_to_topics[x]) -#print "###################################################" -#for x in range(len(topics_to_gold)): -# print x,dict_max(topics_to_gold[str(x)]) -# print x,topics_to_gold[str(x)] -#print term_to_topics diff --git a/gi/pyp-topics/scripts/score-topics.py b/gi/pyp-topics/scripts/score-topics.py deleted file mode 100755 index 1d8a1fcd..00000000 --- a/gi/pyp-topics/scripts/score-topics.py +++ /dev/null @@ -1,64 +0,0 @@ -#!/usr/bin/python - -import sys -from collections import defaultdict - -def dict_max(d): - max_val=-1 - max_key=None - for k in d: - if d[k] > max_val: - max_val = d[k] - max_key = k - assert max_key - return max_key - -if len(sys.argv) != 3: - print "Usage: score-topics.py gold pred" - exit(1) - -gold_file=open(sys.argv[1],'r') -pred_file=open(sys.argv[2],'r') - -gold_to_topics = defaultdict(dict) -topics_to_gold = defaultdict(dict) -term_to_topics = defaultdict(dict) - -for gold_line,pred_line in zip(gold_file,pred_file): - gold_tokens = gold_line.split() - pred_tokens = pred_line.split() - assert len(gold_tokens) == len(pred_tokens) - - for gold_token,pred_token in zip(gold_tokens,pred_tokens): - gold_term,gold_tag = gold_token.rsplit('|',1) - gold_to_topics[gold_tag][pred_token] \ - = gold_to_topics[gold_tag].get(pred_token, 0) + 1 - term_to_topics[gold_term][pred_token] \ - = term_to_topics[gold_term].get(pred_token, 0) + 1 - topics_to_gold[pred_token][gold_tag] \ - = topics_to_gold[pred_token].get(gold_tag, 0) + 1 - -pred=0 -correct=0 -gold_file=open(sys.argv[1],'r') -pred_file=open(sys.argv[2],'r') -for gold_line,pred_line in zip(gold_file,pred_file): - gold_tokens = gold_line.split() - pred_tokens = pred_line.split() - - for gold_token,pred_token in zip(gold_tokens,pred_tokens): - gold_term,gold_tag = gold_token.rsplit('|',1) -# print "%s|%s" % (gold_token, dict_max(gold_to_topics[gold_tag])), - print "%s|%s|%s" % (gold_token, pred_token, dict_max(topics_to_gold[pred_token])), - pred += 1 - if gold_tag == dict_max(topics_to_gold[pred_token]): - correct += 1 - print -print >>sys.stderr, "Many-to-One Accuracy = %f" % (float(correct) / pred) -#for x in gold_to_topics: -# print x,dict_max(gold_to_topics[x]) -#print "###################################################" -#for x in range(len(topics_to_gold)): -# print x,dict_max(topics_to_gold[str(x)]) -# print x,topics_to_gold[str(x)] -#print term_to_topics diff --git a/gi/pyp-topics/scripts/spans2labels.py b/gi/pyp-topics/scripts/spans2labels.py deleted file mode 100755 index 50fa8106..00000000 --- a/gi/pyp-topics/scripts/spans2labels.py +++ /dev/null @@ -1,137 +0,0 @@ -#!/usr/bin/python - -import sys -from operator import itemgetter - -if len(sys.argv) <= 2: - print "Usage: spans2labels.py phrase_context_index [order] [threshold] [languages={s,t,b}{s,t,b}] [type={tag,tok,both},{tag,tok,both}]" - exit(1) - -order=1 -threshold = 0 -cutoff_cat = "<UNK>" -if len(sys.argv) > 2: - order = int(sys.argv[2]) -if len(sys.argv) > 3: - threshold = float(sys.argv[3]) -phr=ctx='t' -if len(sys.argv) > 4: - phr, ctx = sys.argv[4] - assert phr in 'stb' - assert ctx in 'stb' -phr_typ = ctx_typ = 'both' -if len(sys.argv) > 5: - phr_typ, ctx_typ = sys.argv[5].split(',') - assert phr_typ in ('tag', 'tok', 'both') - assert ctx_typ in ('tag', 'tok', 'both') - -#print >>sys.stderr, "Loading phrase index" -phrase_context_index = {} -for line in file(sys.argv[1], 'r'): - phrase,tail= line.split('\t') - contexts = tail.split(" ||| ") - try: # remove Phil's bizarre integer pair - x,y = contexts[0].split() - x=int(x); y=int(y) - contexts = contexts[1:] - except: - pass - if len(contexts) == 1: continue - assert len(contexts) % 2 == 0 - for i in range(0, len(contexts), 2): - #parse contexts[i+1] = " C=1 P=0.8 ... " - features=dict([ keyval.split('=') for keyval in contexts[i+1].split()]) - category = features['C'] - if features.has_key('P') and float(features['P']) < threshold: - category = cutoff_cat - - phrase_context_index[(phrase,contexts[i])] = category - #print (phrase,contexts[i]), category - -#print >>sys.stderr, "Labelling spans" -for line in sys.stdin: - #print >>sys.stderr, "line", line.strip() - line_segments = line.split(' ||| ') - assert len(line_segments) >= 3 - source = ['<s>' for x in range(order)] + line_segments[0].split() + ['</s>' for x in range(order)] - target = ['<s>' for x in range(order)] + line_segments[1].split() + ['</s>' for x in range(order)] - phrases = [ [int(i) for i in x.split('-')] for x in line_segments[2].split()] - - if phr_typ != 'both' or ctx_typ != 'both': - if phr in 'tb' or ctx in 'tb': - target_toks = ['<s>' for x in range(order)] + map(lambda x: x.rsplit('_', 1)[0], line_segments[1].split()) + ['</s>' for x in range(order)] - target_tags = ['<s>' for x in range(order)] + map(lambda x: x.rsplit('_', 1)[-1], line_segments[1].split()) + ['</s>' for x in range(order)] - - if phr in 'tb': - if phr_typ == 'tok': - targetP = target_toks - elif phr_typ == 'tag': - targetP = target_tags - if ctx in 'tb': - if ctx_typ == 'tok': - targetC = target_toks - elif ctx_typ == 'tag': - targetC = target_tags - - if phr in 'sb' or ctx in 'sb': - source_toks = ['<s>' for x in range(order)] + map(lambda x: x.rsplit('_', 1)[0], line_segments[0].split()) + ['</s>' for x in range(order)] - source_tags = ['<s>' for x in range(order)] + map(lambda x: x.rsplit('_', 1)[-1], line_segments[0].split()) + ['</s>' for x in range(order)] - - if phr in 'sb': - if phr_typ == 'tok': - sourceP = source_toks - elif phr_typ == 'tag': - sourceP = source_tags - if ctx in 'sb': - if ctx_typ == 'tok': - sourceC = source_toks - elif ctx_typ == 'tag': - sourceC = source_tags - else: - sourceP = sourceC = source - targetP = targetC = target - - #print >>sys.stderr, "line", source, '---', target, 'phrases', phrases - - print "|||", - - for s1,s2,t1,t2 in phrases: - s1 += order - s2 += order - t1 += order - t2 += order - - phraset = phrases = contextt = contexts = '' - if phr in 'tb': - phraset = reduce(lambda x, y: x+y+" ", targetP[t1:t2], "").strip() - if phr in 'sb': - phrases = reduce(lambda x, y: x+y+" ", sourceP[s1:s2], "").strip() - - if ctx in 'tb': - left_context = reduce(lambda x, y: x+y+" ", targetC[t1-order:t1], "") - right_context = reduce(lambda x, y: x+y+" ", targetC[t2:t2+order], "").strip() - contextt = "%s<PHRASE> %s" % (left_context, right_context) - if ctx in 'sb': - left_context = reduce(lambda x, y: x+y+" ", sourceC[s1-order:s1], "") - right_context = reduce(lambda x, y: x+y+" ", sourceC[s2:s2+order], "").strip() - contexts = "%s<PHRASE> %s" % (left_context, right_context) - - if phr == 'b': - phrase = phraset + ' <SPLIT> ' + phrases - elif phr == 's': - phrase = phrases - else: - phrase = phraset - - if ctx == 'b': - context = contextt + ' <SPLIT> ' + contexts - elif ctx == 's': - context = contexts - else: - context = contextt - - #print "%d-%d-%d-%d looking up" % (s1-order,s2-order,t1-order,t2-order), (phrase, context) - label = phrase_context_index.get((phrase,context), cutoff_cat) - if label != cutoff_cat: #cutoff'd spans are left unlabelled - print "%d-%d-%d-%d:X%s" % (s1-order,s2-order,t1-order,t2-order,label), - print diff --git a/gi/pyp-topics/scripts/tokens2classes.py b/gi/pyp-topics/scripts/tokens2classes.py deleted file mode 100755 index 33df255f..00000000 --- a/gi/pyp-topics/scripts/tokens2classes.py +++ /dev/null @@ -1,27 +0,0 @@ -#!/usr/bin/python - -import sys - -if len(sys.argv) != 3: - print "Usage: tokens2classes.py source_classes target_classes" - exit(1) - -source_to_topics = {} -for line in open(sys.argv[1],'r'): - term,cls = line.split() - source_to_topics[term] = cls - -target_to_topics = {} -for line in open(sys.argv[2],'r'): - term,cls = line.split() - target_to_topics[term] = cls - -for line in sys.stdin: - source, target, tail = line.split(" ||| ") - - for token in source.split(): - print source_to_topics[token], - print "|||", - for token in target.split(): - print target_to_topics[token], - print "|||", tail, diff --git a/gi/pyp-topics/scripts/topics.py b/gi/pyp-topics/scripts/topics.py deleted file mode 100755 index 0db1af71..00000000 --- a/gi/pyp-topics/scripts/topics.py +++ /dev/null @@ -1,20 +0,0 @@ -#!/usr/bin/python - -import sys - -if len(sys.argv) != 2: - print "Usage: topics.py words-per-topic" - exit(1) - -for t,line in enumerate(sys.stdin): - tokens = line.split() - terms = [] - for token in tokens: - elements = token.rsplit(':',1) - terms.append((int(elements[1]),elements[0])) - terms.sort() - terms.reverse() - - print "Topic %d:" % t - map(lambda (x,y) : sys.stdout.write(" %s:%s\n" % (y,x)), terms[:int(sys.argv[1])]) - print |