summaryrefslogtreecommitdiff
path: root/gi/posterior-regularisation/prjava/src/optimization/linesearch
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2012-10-11 14:06:32 -0400
committerChris Dyer <cdyer@cs.cmu.edu>2012-10-11 14:06:32 -0400
commit07ea7b64b6f85e5798a8068453ed9fd2b97396db (patch)
tree644496a1690d84d82a396bbc1e39160788beb2cd /gi/posterior-regularisation/prjava/src/optimization/linesearch
parent37b9e45e5cb29d708f7249dbe0b0fb27685282a0 (diff)
parenta36fcc5d55c1de84ae68c1091ebff2b1c32dc3b7 (diff)
Merge branch 'master' of https://github.com/redpony/cdec
Diffstat (limited to 'gi/posterior-regularisation/prjava/src/optimization/linesearch')
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimization.java102
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimizationAlongProjectionArc.java141
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/DifferentiableLineSearchObjective.java185
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/GenericPickFirstStep.java20
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/InterpolationPickFirstStep.java25
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/LineSearchMethod.java14
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/NonNewtonInterpolationPickFirstStep.java33
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/ProjectedDifferentiableLineSearchObjective.java137
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java300
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfeConditions.java45
10 files changed, 0 insertions, 1002 deletions
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimization.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimization.java
deleted file mode 100644
index c9f9b8df..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimization.java
+++ /dev/null
@@ -1,102 +0,0 @@
-package optimization.linesearch;
-
-import optimization.util.Interpolation;
-
-
-/**
- * Implements Back Tracking Line Search as described on page 37 of Numerical Optimization.
- * Also known as armijo rule
- * @author javg
- *
- */
-public class ArmijoLineSearchMinimization implements LineSearchMethod{
-
- /**
- * How much should the step size decrease at each iteration.
- */
- double contractionFactor = 0.5;
- double c1 = 0.0001;
-
- double sigma1 = 0.1;
- double sigma2 = 0.9;
-
-
-
- double initialStep;
- int maxIterations = 10;
-
-
- public ArmijoLineSearchMinimization(){
- this.initialStep = 1;
- }
-
- //Experiment
- double previousStepPicked = -1;;
- double previousInitGradientDot = -1;
- double currentInitGradientDot = -1;
-
-
- public void reset(){
- previousStepPicked = -1;;
- previousInitGradientDot = -1;
- currentInitGradientDot = -1;
- }
-
- public void setInitialStep(double initial){
- initialStep = initial;
- }
-
- /**
- *
- */
-
- public double getStepSize(DifferentiableLineSearchObjective o) {
- currentInitGradientDot = o.getInitialGradient();
- //Should update all in the objective
- o.updateAlpha(initialStep);
- int nrIterations = 0;
- //System.out.println("tried alpha" + initialStep + " value " + o.getCurrentValue());
- while(!WolfeConditions.suficientDecrease(o,c1)){
- if(nrIterations >= maxIterations){
- o.printLineSearchSteps();
- return -1;
- }
- double alpha=o.getAlpha();
- double alphaTemp =
- Interpolation.quadraticInterpolation(o.getOriginalValue(), o.getInitialGradient(), alpha, o.getCurrentValue());
- if(alphaTemp >= sigma1 || alphaTemp <= sigma2*o.getAlpha()){
-// System.out.println("using alpha temp " + alphaTemp);
- alpha = alphaTemp;
- }else{
-// System.out.println("Discarding alpha temp " + alphaTemp);
- alpha = alpha*contractionFactor;
- }
-// double alpha =o.getAlpha()*contractionFactor;
-
- o.updateAlpha(alpha);
- //System.out.println("tried alpha" + alpha+ " value " + o.getCurrentValue());
- nrIterations++;
- }
-
- //System.out.println("Leavning line search used:");
- //o.printLineSearchSteps();
-
- previousInitGradientDot = currentInitGradientDot;
- previousStepPicked = o.getAlpha();
- return o.getAlpha();
- }
-
- public double getInitialGradient() {
- return currentInitGradientDot;
-
- }
-
- public double getPreviousInitialGradient() {
- return previousInitGradientDot;
- }
-
- public double getPreviousStepUsed() {
- return previousStepPicked;
- }
-
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimizationAlongProjectionArc.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimizationAlongProjectionArc.java
deleted file mode 100644
index e153f2da..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ArmijoLineSearchMinimizationAlongProjectionArc.java
+++ /dev/null
@@ -1,141 +0,0 @@
-package optimization.linesearch;
-
-import optimization.gradientBasedMethods.ProjectedObjective;
-import optimization.util.Interpolation;
-import optimization.util.MathUtils;
-
-
-
-
-
-/**
- * Implements Armijo Rule Line search along the projection arc (Non-Linear Programming page 230)
- * To be used with Projected gradient Methods.
- *
- * Recall that armijo tries successive step sizes alpha until the sufficient decrease is satisfied:
- * f(x+alpha*direction) < f(x) + alpha*c1*grad(f)*direction
- *
- * In this case we are optimizing over a convex set X so we must guarantee that the new point stays inside the
- * constraints.
- * First the direction as to be feasible (inside constraints) and will be define as:
- * d = (x_k_f - x_k) where x_k_f is a feasible point.
- * so the armijo condition can be rewritten as:
- * f(x+alpha(x_k_f - x_k)) < f(x) + c1*grad(f)*(x_k_f - x_k)
- * and x_k_f is defined as:
- * [x_k-alpha*grad(f)]+
- * where []+ mean a projection to the feasibility set.
- * So this means that we take a step on the negative gradient (gradient descent) and then obtain then project
- * that point to the feasibility set.
- * Note that if the point is already feasible then we are back to the normal armijo rule.
- *
- * @author javg
- *
- */
-public class ArmijoLineSearchMinimizationAlongProjectionArc implements LineSearchMethod{
-
- /**
- * How much should the step size decrease at each iteration.
- */
- double contractionFactor = 0.5;
- double c1 = 0.0001;
-
-
- double initialStep;
- int maxIterations = 100;
-
-
- double sigma1 = 0.1;
- double sigma2 = 0.9;
-
- //Experiment
- double previousStepPicked = -1;;
- double previousInitGradientDot = -1;
- double currentInitGradientDot = -1;
-
- GenericPickFirstStep strategy;
-
-
- public void reset(){
- previousStepPicked = -1;;
- previousInitGradientDot = -1;
- currentInitGradientDot = -1;
- }
-
-
- public ArmijoLineSearchMinimizationAlongProjectionArc(){
- this.initialStep = 1;
- }
-
- public ArmijoLineSearchMinimizationAlongProjectionArc(GenericPickFirstStep strategy){
- this.strategy = strategy;
- this.initialStep = strategy.getFirstStep(this);
- }
-
-
- public void setInitialStep(double initial){
- this.initialStep = initial;
- }
-
- /**
- *
- */
-
- public double getStepSize(DifferentiableLineSearchObjective o) {
-
-
- //Should update all in the objective
- initialStep = strategy.getFirstStep(this);
- o.updateAlpha(initialStep);
- previousInitGradientDot=currentInitGradientDot;
- currentInitGradientDot=o.getCurrentGradient();
- int nrIterations = 0;
-
- //Armijo rule, the current value has to be smaller than the original value plus a small step of the gradient
- while(o.getCurrentValue() >
- o.getOriginalValue() + c1*(o.getCurrentGradient())){
-// System.out.println("curr value "+o.getCurrentValue());
-// System.out.println("original value "+o.getOriginalValue());
-// System.out.println("GRADIENT decrease" +(MathUtils.dotProduct(o.o.gradient,
-// MathUtils.arrayMinus(o.originalParameters,((ProjectedObjective)o.o).auxParameters))));
-// System.out.println("GRADIENT SAVED" + o.getCurrentGradient());
- if(nrIterations >= maxIterations){
- System.out.println("Could not find a step leaving line search with -1");
- o.printLineSearchSteps();
- return -1;
- }
- double alpha=o.getAlpha();
- double alphaTemp =
- Interpolation.quadraticInterpolation(o.getOriginalValue(), o.getInitialGradient(), alpha, o.getCurrentValue());
- if(alphaTemp >= sigma1 || alphaTemp <= sigma2*o.getAlpha()){
- alpha = alphaTemp;
- }else{
- alpha = alpha*contractionFactor;
- }
-// double alpha =obj.getAlpha()*contractionFactor;
- o.updateAlpha(alpha);
- nrIterations++;
- }
-// System.out.println("curr value "+o.getCurrentValue());
-// System.out.println("original value "+o.getOriginalValue());
-// System.out.println("sufficient decrease" +c1*o.getCurrentGradient());
-// System.out.println("Leavning line search used:");
-// o.printSmallLineSearchSteps();
-
- previousStepPicked = o.getAlpha();
- return o.getAlpha();
- }
-
- public double getInitialGradient() {
- return currentInitGradientDot;
-
- }
-
- public double getPreviousInitialGradient() {
- return previousInitGradientDot;
- }
-
- public double getPreviousStepUsed() {
- return previousStepPicked;
- }
-
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/DifferentiableLineSearchObjective.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/DifferentiableLineSearchObjective.java
deleted file mode 100644
index a5bc958e..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/DifferentiableLineSearchObjective.java
+++ /dev/null
@@ -1,185 +0,0 @@
-package optimization.linesearch;
-
-import gnu.trove.TDoubleArrayList;
-import gnu.trove.TIntArrayList;
-
-import java.util.ArrayList;
-import java.util.Arrays;
-import java.util.Collections;
-import java.util.Comparator;
-
-import optimization.gradientBasedMethods.Objective;
-import optimization.util.MathUtils;
-import optimization.util.StaticTools;
-
-
-
-import util.MathUtil;
-import util.Printing;
-
-
-/**
- * A wrapper class for the actual objective in order to perform
- * line search. The optimization code assumes that this does a lot
- * of caching in order to simplify legibility. For the applications
- * we use it for, caching the entire history of evaluations should be
- * a win.
- *
- * Note: the lastEvaluatedAt value is very important, since we will use
- * it to avoid doing an evaluation of the gradient after the line search.
- *
- * The differentiable line search objective defines a search along the ray
- * given by a direction of the main objective.
- * It defines the following function,
- * where f is the original objective function:
- * g(alpha) = f(x_0 + alpha*direction)
- * g'(alpha) = f'(x_0 + alpha*direction)*direction
- *
- * @author joao
- *
- */
-public class DifferentiableLineSearchObjective {
-
-
-
- Objective o;
- int nrIterations;
- TDoubleArrayList steps;
- TDoubleArrayList values;
- TDoubleArrayList gradients;
-
- //This variables cannot change
- public double[] originalParameters;
- public double[] searchDirection;
-
-
- /**
- * Defines a line search objective:
- * Receives:
- * Objective to each we are performing the line search, is used to calculate values and gradients
- * Direction where to do the ray search, note that the direction does not depend of the
- * objective but depends from the method.
- * @param o
- * @param direction
- */
- public DifferentiableLineSearchObjective(Objective o) {
- this.o = o;
- originalParameters = new double[o.getNumParameters()];
- searchDirection = new double[o.getNumParameters()];
- steps = new TDoubleArrayList();
- values = new TDoubleArrayList();
- gradients = new TDoubleArrayList();
- }
- /**
- * Called whenever we start a new iteration.
- * Receives the ray where we are searching for and resets all values
- *
- */
- public void reset(double[] direction){
- //Copy initial values
- System.arraycopy(o.getParameters(), 0, originalParameters, 0, o.getNumParameters());
- System.arraycopy(direction, 0, searchDirection, 0, o.getNumParameters());
-
- //Initialize variables
- nrIterations = 0;
- steps.clear();
- values.clear();
- gradients.clear();
-
- values.add(o.getValue());
- gradients.add(MathUtils.dotProduct(o.getGradient(),direction));
- steps.add(0);
- }
-
-
- /**
- * update the current value of alpha.
- * Takes a step with that alpha in direction
- * Get the real objective value and gradient and calculate all required information.
- */
- public void updateAlpha(double alpha){
- if(alpha < 0){
- System.out.println("alpha may not be smaller that zero");
- throw new RuntimeException();
- }
- nrIterations++;
- steps.add(alpha);
- //x_t+1 = x_t + alpha*direction
- System.arraycopy(originalParameters,0, o.getParameters(), 0, originalParameters.length);
- MathUtils.plusEquals(o.getParameters(), searchDirection, alpha);
- o.setParameters(o.getParameters());
-// System.out.println("Took a step of " + alpha + " new value " + o.getValue());
- values.add(o.getValue());
- gradients.add(MathUtils.dotProduct(o.getGradient(),searchDirection));
- }
-
-
-
- public int getNrIterations(){
- return nrIterations;
- }
-
- /**
- * return g(alpha) for the current value of alpha
- * @param iter
- * @return
- */
- public double getValue(int iter){
- return values.get(iter);
- }
-
- public double getCurrentValue(){
- return values.get(nrIterations);
- }
-
- public double getOriginalValue(){
- return values.get(0);
- }
-
- /**
- * return g'(alpha) for the current value of alpha
- * @param iter
- * @return
- */
- public double getGradient(int iter){
- return gradients.get(iter);
- }
-
- public double getCurrentGradient(){
- return gradients.get(nrIterations);
- }
-
- public double getInitialGradient(){
- return gradients.get(0);
- }
-
-
-
-
- public double getAlpha(){
- return steps.get(nrIterations);
- }
-
- public void printLineSearchSteps(){
- System.out.println(
- " Steps size "+steps.size() +
- "Values size "+values.size() +
- "Gradeients size "+gradients.size());
- for(int i =0; i < steps.size();i++){
- System.out.println("Iter " + i + " step " + steps.get(i) +
- " value " + values.get(i) + " grad " + gradients.get(i));
- }
- }
-
- public void printSmallLineSearchSteps(){
- for(int i =0; i < steps.size();i++){
- System.out.print(StaticTools.prettyPrint(steps.get(i), "0.0000E00",8) + " ");
- }
- System.out.println();
- }
-
- public static void main(String[] args) {
-
- }
-
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/GenericPickFirstStep.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/GenericPickFirstStep.java
deleted file mode 100644
index a33eb311..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/GenericPickFirstStep.java
+++ /dev/null
@@ -1,20 +0,0 @@
-package optimization.linesearch;
-
-
-public class GenericPickFirstStep{
- double _initValue;
- public GenericPickFirstStep(double initValue) {
- _initValue = initValue;
- }
-
- public double getFirstStep(LineSearchMethod ls){
- return _initValue;
- }
- public void collectInitValues(LineSearchMethod ls){
-
- }
-
- public void collectFinalValues(LineSearchMethod ls){
-
- }
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/InterpolationPickFirstStep.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/InterpolationPickFirstStep.java
deleted file mode 100644
index 0deebcdb..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/InterpolationPickFirstStep.java
+++ /dev/null
@@ -1,25 +0,0 @@
-package optimization.linesearch;
-
-
-public class InterpolationPickFirstStep extends GenericPickFirstStep{
- public InterpolationPickFirstStep(double initValue) {
- super(initValue);
- }
-
- public double getFirstStep(LineSearchMethod ls){
- if(ls.getPreviousStepUsed() != -1 && ls.getPreviousInitialGradient()!=0){
- double newStep = Math.min(300, 1.02*ls.getPreviousInitialGradient()*ls.getPreviousStepUsed()/ls.getInitialGradient());
- // System.out.println("proposing " + newStep);
- return newStep;
-
- }
- return _initValue;
- }
- public void collectInitValues(WolfRuleLineSearch ls){
-
- }
-
- public void collectFinalValues(WolfRuleLineSearch ls){
-
- }
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/LineSearchMethod.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/LineSearchMethod.java
deleted file mode 100644
index 80cd7f39..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/LineSearchMethod.java
+++ /dev/null
@@ -1,14 +0,0 @@
-package optimization.linesearch;
-
-
-public interface LineSearchMethod {
-
- double getStepSize(DifferentiableLineSearchObjective o);
-
- public double getInitialGradient();
- public double getPreviousInitialGradient();
- public double getPreviousStepUsed();
-
- public void setInitialStep(double initial);
- public void reset();
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/NonNewtonInterpolationPickFirstStep.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/NonNewtonInterpolationPickFirstStep.java
deleted file mode 100644
index 4b354fd9..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/NonNewtonInterpolationPickFirstStep.java
+++ /dev/null
@@ -1,33 +0,0 @@
-package optimization.linesearch;
-
-/**
- * Non newtwon since we don't always try 1...
- * Not sure if that is even usefull for newton
- * @author javg
- *
- */
-public class NonNewtonInterpolationPickFirstStep extends GenericPickFirstStep{
- public NonNewtonInterpolationPickFirstStep(double initValue) {
- super(initValue);
- }
-
- public double getFirstStep(LineSearchMethod ls){
-// System.out.println("Previous step used " + ls.getPreviousStepUsed());
-// System.out.println("PreviousGradinebt " + ls.getPreviousInitialGradient());
-// System.out.println("CurrentGradinebt " + ls.getInitialGradient());
- if(ls.getPreviousStepUsed() != -1 && ls.getPreviousInitialGradient()!=0){
- double newStep = 1.01*ls.getPreviousInitialGradient()*ls.getPreviousStepUsed()/ls.getInitialGradient();
- //System.out.println("Suggesting " + newStep);
- return newStep;
-
- }
- return _initValue;
- }
- public void collectInitValues(WolfRuleLineSearch ls){
-
- }
-
- public void collectFinalValues(WolfRuleLineSearch ls){
-
- }
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ProjectedDifferentiableLineSearchObjective.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/ProjectedDifferentiableLineSearchObjective.java
deleted file mode 100644
index 29ccbc32..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/ProjectedDifferentiableLineSearchObjective.java
+++ /dev/null
@@ -1,137 +0,0 @@
-package optimization.linesearch;
-
-import optimization.gradientBasedMethods.Objective;
-import optimization.gradientBasedMethods.ProjectedObjective;
-import optimization.util.MathUtils;
-import optimization.util.MatrixOutput;
-
-
-/**
- * See ArmijoLineSearchMinimizationAlongProjectionArc for description
- * @author javg
- *
- */
-public class ProjectedDifferentiableLineSearchObjective extends DifferentiableLineSearchObjective{
-
-
-
- ProjectedObjective obj;
- public ProjectedDifferentiableLineSearchObjective(Objective o) {
- super(o);
- if(!(o instanceof ProjectedObjective)){
- System.out.println("Must receive a projected objective");
- throw new RuntimeException();
- }
- obj = (ProjectedObjective) o;
- }
-
-
-
- public double[] projectPoint (double[] point){
- return ((ProjectedObjective)o).projectPoint(point);
- }
- public void updateAlpha(double alpha){
- if(alpha < 0){
- System.out.println("alpha may not be smaller that zero");
- throw new RuntimeException();
- }
-
- if(obj.auxParameters == null){
- obj.auxParameters = new double[obj.getParameters().length];
- }
-
- nrIterations++;
-
- steps.add(alpha);
- System.arraycopy(originalParameters, 0, obj.auxParameters, 0, obj.auxParameters.length);
-
- //Take a step into the search direction
-
-// MatrixOutput.printDoubleArray(obj.getGradient(), "gradient");
-
-// alpha=gradients.get(0)*alpha/(gradients.get(gradients.size()-1));
-
- //x_t+1 = x_t - alpha*gradient = x_t + alpha*direction
- MathUtils.plusEquals(obj.auxParameters, searchDirection, alpha);
-// MatrixOutput.printDoubleArray(obj.auxParameters, "before projection");
- obj.auxParameters = projectPoint(obj.auxParameters);
-// MatrixOutput.printDoubleArray(obj.auxParameters, "after projection");
- o.setParameters(obj.auxParameters);
-// System.out.println("new parameters");
-// o.printParameters();
- values.add(o.getValue());
- //Computes the new gradient x_k-[x_k-alpha*Gradient(x_k)]+
- MathUtils.minusEqualsInverse(originalParameters,obj.auxParameters,1);
-// MatrixOutput.printDoubleArray(obj.auxParameters, "new gradient");
- //Dot product between the new direction and the new gradient
- double gradient = MathUtils.dotProduct(obj.auxParameters,searchDirection);
- gradients.add(gradient);
- if(gradient > 0){
- System.out.println("Gradient on line search has to be smaller than zero");
- System.out.println("Iter: " + nrIterations);
- MatrixOutput.printDoubleArray(obj.auxParameters, "new direction");
- MatrixOutput.printDoubleArray(searchDirection, "search direction");
- throw new RuntimeException();
-
- }
-
- }
-
- /**
- *
- */
-// public void updateAlpha(double alpha){
-//
-// if(alpha < 0){
-// System.out.println("alpha may not be smaller that zero");
-// throw new RuntimeException();
-// }
-//
-// nrIterations++;
-// steps.add(alpha);
-// //x_t+1 = x_t - alpha*direction
-// System.arraycopy(originalParameters, 0, parametersChange, 0, parametersChange.length);
-//// MatrixOutput.printDoubleArray(parametersChange, "parameters before step");
-//// System.out.println("Step" + alpha);
-// MatrixOutput.printDoubleArray(originalGradient, "gradient + " + alpha);
-//
-// MathUtils.minusEquals(parametersChange, originalGradient, alpha);
-//
-// //Project the points into the feasibility set
-//// MatrixOutput.printDoubleArray(parametersChange, "before projection");
-// //x_k(alpha) = [x_k - alpha*grad f(x_k)]+
-// parametersChange = projectPoint(parametersChange);
-//// MatrixOutput.printDoubleArray(parametersChange, "after projection");
-// o.setParameters(parametersChange);
-// values.add(o.getValue());
-// //Computes the new direction x_k-[x_k-alpha*Gradient(x_k)]+
-//
-// direction=MathUtils.arrayMinus(parametersChange,originalParameters);
-//// MatrixOutput.printDoubleArray(direction, "new direction");
-//
-// double gradient = MathUtils.dotProduct(originalGradient,direction);
-// gradients.add(gradient);
-// if(gradient > 1E-10){
-// System.out.println("cosine " + gradient/(MathUtils.L2Norm(originalGradient)*MathUtils.L2Norm(direction)));
-//
-//
-// System.out.println("not a descent direction for alpha " + alpha);
-// System.arraycopy(originalParameters, 0, parametersChange, 0, parametersChange.length);
-// MathUtils.minusEquals(parametersChange, originalGradient, 1E-20);
-//
-// parametersChange = projectPoint(parametersChange);
-// direction=MathUtils.arrayMinus(parametersChange,originalParameters);
-// gradient = MathUtils.dotProduct(originalGradient,direction);
-// if(gradient > 0){
-// System.out.println("Direction is really non-descent evern for small alphas:" + gradient);
-// }
-// System.out.println("ProjecteLineSearchObjective: Should be a descent direction at " + nrIterations + ": "+ gradient);
-//// System.out.println(Printing.doubleArrayToString(originalGradient, null,"Original gradient"));
-//// System.out.println(Printing.doubleArrayToString(originalParameters, null,"Original parameters"));
-//// System.out.println(Printing.doubleArrayToString(parametersChange, null,"Projected parameters"));
-//// System.out.println(Printing.doubleArrayToString(direction, null,"Direction"));
-// throw new RuntimeException();
-// }
-// }
-
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java
deleted file mode 100644
index 5489f2d0..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java
+++ /dev/null
@@ -1,300 +0,0 @@
-package optimization.linesearch;
-
-import java.io.PrintStream;
-import java.util.ArrayList;
-
-import optimization.util.Interpolation;
-
-
-
-
-/**
- *
- * @author javg
- *
- */
-public class WolfRuleLineSearch implements LineSearchMethod{
-
- GenericPickFirstStep pickFirstStep;
-
- double c1 = 1.0E-4;
- double c2 = 0.9;
-
- //Application dependent
- double maxStep=100;
-
- int extrapolationIteration;
- int maxExtrapolationIteration = 1000;
-
-
- double minZoomDiffTresh = 10E-10;
-
-
- ArrayList<Double> steps;
- ArrayList<Double> gradientDots;
- ArrayList<Double> functionVals;
-
- int debugLevel = 0;
- boolean foudStep = false;
-
- public WolfRuleLineSearch(GenericPickFirstStep pickFirstStep){
- this.pickFirstStep = pickFirstStep;
-
- }
-
-
-
-
- public WolfRuleLineSearch(GenericPickFirstStep pickFirstStep, double c1, double c2){
- this.pickFirstStep = pickFirstStep;
- initialStep = pickFirstStep.getFirstStep(this);
- this.c1 = c1;
- this.c2 = c2;
- }
-
- public void setDebugLevel(int level){
- debugLevel = level;
- }
-
- //Experiment
- double previousStepPicked = -1;;
- double previousInitGradientDot = -1;
- double currentInitGradientDot = -1;
-
- double initialStep;
-
-
- public void reset(){
- previousStepPicked = -1;;
- previousInitGradientDot = -1;
- currentInitGradientDot = -1;
- if(steps != null)
- steps.clear();
- if(gradientDots != null)
- gradientDots.clear();
- if(functionVals != null)
- functionVals.clear();
- }
-
- public void setInitialStep(double initial){
- initialStep = pickFirstStep.getFirstStep(this);
- }
-
-
-
- /**
- * Implements Wolf Line search as described in nocetal.
- * This process consists in two stages. The first stage we try to satisfy the
- * biggest step size that still satisfies the curvature condition. We keep increasing
- * the initial step size until we find a step satisfying the curvature condition, we return
- * success, we failed the sufficient increase so we cannot increase more and we can call zoom with
- * that maximum step, or we pass the minimum in which case we can call zoom the same way.
- *
- */
- public double getStepSize(DifferentiableLineSearchObjective objective){
- //System.out.println("entering line search");
-
- foudStep = false;
- if(debugLevel >= 1){
- steps = new ArrayList<Double>();
- gradientDots = new ArrayList<Double>();
- functionVals =new ArrayList<Double>();
- }
-
- //test
- currentInitGradientDot = objective.getInitialGradient();
-
-
- double previousValue = objective.getCurrentValue();
- double previousStep = 0;
- double currentStep =pickFirstStep.getFirstStep(this);
- for(extrapolationIteration = 0;
- extrapolationIteration < maxExtrapolationIteration; extrapolationIteration++){
-
- objective.updateAlpha(currentStep);
- double currentValue = objective.getCurrentValue();
- if(debugLevel >= 1){
- steps.add(currentStep);
- functionVals.add(currentValue);
- gradientDots.add(objective.getCurrentGradient());
- }
-
-
- //The current step does not satisfy the sufficient decrease condition anymore
- // so we cannot get bigger than that calling zoom.
- if(!WolfeConditions.suficientDecrease(objective,c1)||
- (extrapolationIteration > 0 && currentValue >= previousValue)){
- currentStep = zoom(objective,previousStep,currentStep,objective.nrIterations-1,objective.nrIterations);
- break;
- }
-
- //Satisfying both conditions ready to leave
- if(WolfeConditions.sufficientCurvature(objective,c1,c2)){
- //Found step
- foudStep = true;
- break;
- }
-
- /**
- * This means that we passed the minimum already since the dot product that should be
- * negative (descent direction) is now positive. So we cannot increase more. On the other hand
- * since we know the direction is a descent direction the value the objective at the current step
- * is for sure smaller than the preivous step so we change the order.
- */
- if(objective.getCurrentGradient() >= 0){
- currentStep = zoom(objective,currentStep,previousStep,objective.nrIterations,objective.nrIterations-1);
- break;
- }
-
-
- //Ok, so we can still get a bigger step,
- double aux = currentStep;
- //currentStep = currentStep*2;
- if(Math.abs(currentStep-maxStep)>1.1e-2){
- currentStep = (currentStep+maxStep)/2;
- }else{
- currentStep = currentStep*2;
- }
- previousStep = aux;
- previousValue = currentValue;
- //Could be done better
- if(currentStep >= maxStep){
- System.out.println("Excedded max step...calling zoom with maxStepSize");
- currentStep = zoom(objective,previousStep,currentStep,objective.nrIterations-1,objective.nrIterations);
- }
- }
- if(!foudStep){
- System.out.println("Wolfe Rule exceed number of iterations");
- if(debugLevel >= 1){
- printSmallWolfeStats(System.out);
-// System.out.println("Line search values");
-// DebugHelpers.getLineSearchGraph(o, direction, originalParameters,origValue, origGradDirectionDot,c1,c2);
- }
- return -1;
- }
- if(debugLevel >= 1){
- printSmallWolfeStats(System.out);
- }
-
- previousStepPicked = currentStep;
- previousInitGradientDot = currentInitGradientDot;
-// objective.printLineSearchSteps();
- return currentStep;
- }
-
-
-
-
-
- public void printWolfeStats(PrintStream out){
- for(int i = 0; i < steps.size(); i++){
- out.println("Step " + steps.get(i) + " value " + functionVals.get(i) + " dot " + gradientDots.get(i));
- }
- }
-
- public void printSmallWolfeStats(PrintStream out){
- for(int i = 0; i < steps.size(); i++){
- out.print(steps.get(i) + ":"+functionVals.get(i)+":"+gradientDots.get(i)+" ");
- }
- System.out.println();
- }
-
-
-
- /**
- * Pick a step satisfying the strong wolfe condition from an given from lowerStep and higherStep
- * picked on the routine above.
- *
- * Both lowerStep and higherStep have been evaluated, so we only need to pass the iteration where they have
- * been evaluated and save extra evaluations.
- *
- * We know that lowerStepValue as to be smaller than higherStepValue, and that a point
- * satisfying both conditions exists in such interval.
- *
- * LowerStep always satisfies at least the sufficient decrease
- * @return
- */
- public double zoom(DifferentiableLineSearchObjective o, double lowerStep, double higherStep,
- int lowerStepIter, int higherStepIter){
-
- if(debugLevel >=2){
- System.out.println("Entering zoom with " + lowerStep+"-"+higherStep);
- }
-
- double currentStep=-1;
-
- int zoomIter = 0;
- while(zoomIter < 1000){
- if(Math.abs(lowerStep-higherStep) < minZoomDiffTresh){
- o.updateAlpha(lowerStep);
- if(debugLevel >= 1){
- steps.add(lowerStep);
- functionVals.add(o.getCurrentValue());
- gradientDots.add(o.getCurrentGradient());
- }
- foudStep = true;
- return lowerStep;
- }
-
- //Cubic interpolation
- currentStep =
- Interpolation.cubicInterpolation(lowerStep, o.getValue(lowerStepIter), o.getGradient(lowerStepIter),
- higherStep, o.getValue(higherStepIter), o.getGradient(higherStepIter));
-
- //Safeguard.... should not be required check in what condtions it is required
- if(currentStep < 0 ){
- currentStep = (lowerStep+higherStep)/2;
- }
- if(Double.isNaN(currentStep) || Double.isInfinite(currentStep)){
- currentStep = (lowerStep+higherStep)/2;
- }
-// currentStep = (lowerStep+higherStep)/2;
-// System.out.println("Trying "+currentStep);
- o.updateAlpha(currentStep);
- if(debugLevel >=1){
- steps.add(currentStep);
- functionVals.add(o.getCurrentValue());
- gradientDots.add(o.getCurrentGradient());
- }
- if(!WolfeConditions.suficientDecrease(o,c1)
- || o.getCurrentValue() >= o.getValue(lowerStepIter)){
- higherStepIter = o.nrIterations;
- higherStep = currentStep;
- }
- //Note when entering here the new step satisfies the sufficent decrease and
- // or as a function value that is better than the previous best (lowerStepFunctionValues)
- // so we either leave or change the value of the alpha low.
- else{
- if(WolfeConditions.sufficientCurvature(o,c1,c2)){
- //Satisfies the both wolf conditions
- foudStep = true;
- break;
- }
- //If does not satisfy curvature
- if(o.getCurrentGradient()*(higherStep-lowerStep) >= 0){
- higherStep = lowerStep;
- higherStepIter = lowerStepIter;
- }
- lowerStep = currentStep;
- lowerStepIter = o.nrIterations;
- }
- zoomIter++;
- }
- return currentStep;
- }
-
- public double getInitialGradient() {
- return currentInitGradientDot;
-
- }
-
- public double getPreviousInitialGradient() {
- return previousInitGradientDot;
- }
-
- public double getPreviousStepUsed() {
- return previousStepPicked;
- }
-
-
-}
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfeConditions.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfeConditions.java
deleted file mode 100644
index dcc704eb..00000000
--- a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfeConditions.java
+++ /dev/null
@@ -1,45 +0,0 @@
-package optimization.linesearch;
-
-
-public class WolfeConditions {
-
- /**
- * Sufficient Increase number. Default constant
- */
-
-
- /**
- * Value for suficient curvature:
- * 0.9 - For newton and quase netwon methods
- * 0.1 - Non linear conhugate gradient
- */
-
- int debugLevel = 0;
- public void setDebugLevel(int level){
- debugLevel = level;
- }
-
- public static boolean suficientDecrease(DifferentiableLineSearchObjective o, double c1){
- double value = o.getOriginalValue()+c1*o.getAlpha()*o.getInitialGradient();
-// System.out.println("Sufficient Decrease original "+value+" new "+ o.getCurrentValue());
- return o.getCurrentValue() <= value;
- }
-
-
-
-
- public static boolean sufficientCurvature(DifferentiableLineSearchObjective o, double c1, double c2){
-// if(debugLevel >= 2){
-// double current = Math.abs(o.getCurrentGradient());
-// double orig = -c2*o.getInitialGradient();
-// if(current <= orig){
-// return true;
-// }else{
-// System.out.println("Not satistfying curvature condition curvature " + current + " wants " + orig);
-// return false;
-// }
-// }
- return Math.abs(o.getCurrentGradient()) <= -c2*o.getInitialGradient();
- }
-
-}