diff options
author | desaicwtf <desaicwtf@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-07-09 16:59:55 +0000 |
---|---|---|
committer | desaicwtf <desaicwtf@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-07-09 16:59:55 +0000 |
commit | bdea91300c85539ab7153ccba58689612f66bb4d (patch) | |
tree | e778ffa1ea4d04a239b58c6e6191c0d4549006f0 /gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java | |
parent | 0d1d84630a08f1c901cf09b4bcc9356c4165302f (diff) |
add optimization library source code
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@204 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java')
-rw-r--r-- | gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java new file mode 100644 index 00000000..5489f2d0 --- /dev/null +++ b/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java @@ -0,0 +1,300 @@ +package optimization.linesearch; + +import java.io.PrintStream; +import java.util.ArrayList; + +import optimization.util.Interpolation; + + + + +/** + * + * @author javg + * + */ +public class WolfRuleLineSearch implements LineSearchMethod{ + + GenericPickFirstStep pickFirstStep; + + double c1 = 1.0E-4; + double c2 = 0.9; + + //Application dependent + double maxStep=100; + + int extrapolationIteration; + int maxExtrapolationIteration = 1000; + + + double minZoomDiffTresh = 10E-10; + + + ArrayList<Double> steps; + ArrayList<Double> gradientDots; + ArrayList<Double> functionVals; + + int debugLevel = 0; + boolean foudStep = false; + + public WolfRuleLineSearch(GenericPickFirstStep pickFirstStep){ + this.pickFirstStep = pickFirstStep; + + } + + + + + public WolfRuleLineSearch(GenericPickFirstStep pickFirstStep, double c1, double c2){ + this.pickFirstStep = pickFirstStep; + initialStep = pickFirstStep.getFirstStep(this); + this.c1 = c1; + this.c2 = c2; + } + + public void setDebugLevel(int level){ + debugLevel = level; + } + + //Experiment + double previousStepPicked = -1;; + double previousInitGradientDot = -1; + double currentInitGradientDot = -1; + + double initialStep; + + + public void reset(){ + previousStepPicked = -1;; + previousInitGradientDot = -1; + currentInitGradientDot = -1; + if(steps != null) + steps.clear(); + if(gradientDots != null) + gradientDots.clear(); + if(functionVals != null) + functionVals.clear(); + } + + public void setInitialStep(double initial){ + initialStep = pickFirstStep.getFirstStep(this); + } + + + + /** + * Implements Wolf Line search as described in nocetal. + * This process consists in two stages. The first stage we try to satisfy the + * biggest step size that still satisfies the curvature condition. We keep increasing + * the initial step size until we find a step satisfying the curvature condition, we return + * success, we failed the sufficient increase so we cannot increase more and we can call zoom with + * that maximum step, or we pass the minimum in which case we can call zoom the same way. + * + */ + public double getStepSize(DifferentiableLineSearchObjective objective){ + //System.out.println("entering line search"); + + foudStep = false; + if(debugLevel >= 1){ + steps = new ArrayList<Double>(); + gradientDots = new ArrayList<Double>(); + functionVals =new ArrayList<Double>(); + } + + //test + currentInitGradientDot = objective.getInitialGradient(); + + + double previousValue = objective.getCurrentValue(); + double previousStep = 0; + double currentStep =pickFirstStep.getFirstStep(this); + for(extrapolationIteration = 0; + extrapolationIteration < maxExtrapolationIteration; extrapolationIteration++){ + + objective.updateAlpha(currentStep); + double currentValue = objective.getCurrentValue(); + if(debugLevel >= 1){ + steps.add(currentStep); + functionVals.add(currentValue); + gradientDots.add(objective.getCurrentGradient()); + } + + + //The current step does not satisfy the sufficient decrease condition anymore + // so we cannot get bigger than that calling zoom. + if(!WolfeConditions.suficientDecrease(objective,c1)|| + (extrapolationIteration > 0 && currentValue >= previousValue)){ + currentStep = zoom(objective,previousStep,currentStep,objective.nrIterations-1,objective.nrIterations); + break; + } + + //Satisfying both conditions ready to leave + if(WolfeConditions.sufficientCurvature(objective,c1,c2)){ + //Found step + foudStep = true; + break; + } + + /** + * This means that we passed the minimum already since the dot product that should be + * negative (descent direction) is now positive. So we cannot increase more. On the other hand + * since we know the direction is a descent direction the value the objective at the current step + * is for sure smaller than the preivous step so we change the order. + */ + if(objective.getCurrentGradient() >= 0){ + currentStep = zoom(objective,currentStep,previousStep,objective.nrIterations,objective.nrIterations-1); + break; + } + + + //Ok, so we can still get a bigger step, + double aux = currentStep; + //currentStep = currentStep*2; + if(Math.abs(currentStep-maxStep)>1.1e-2){ + currentStep = (currentStep+maxStep)/2; + }else{ + currentStep = currentStep*2; + } + previousStep = aux; + previousValue = currentValue; + //Could be done better + if(currentStep >= maxStep){ + System.out.println("Excedded max step...calling zoom with maxStepSize"); + currentStep = zoom(objective,previousStep,currentStep,objective.nrIterations-1,objective.nrIterations); + } + } + if(!foudStep){ + System.out.println("Wolfe Rule exceed number of iterations"); + if(debugLevel >= 1){ + printSmallWolfeStats(System.out); +// System.out.println("Line search values"); +// DebugHelpers.getLineSearchGraph(o, direction, originalParameters,origValue, origGradDirectionDot,c1,c2); + } + return -1; + } + if(debugLevel >= 1){ + printSmallWolfeStats(System.out); + } + + previousStepPicked = currentStep; + previousInitGradientDot = currentInitGradientDot; +// objective.printLineSearchSteps(); + return currentStep; + } + + + + + + public void printWolfeStats(PrintStream out){ + for(int i = 0; i < steps.size(); i++){ + out.println("Step " + steps.get(i) + " value " + functionVals.get(i) + " dot " + gradientDots.get(i)); + } + } + + public void printSmallWolfeStats(PrintStream out){ + for(int i = 0; i < steps.size(); i++){ + out.print(steps.get(i) + ":"+functionVals.get(i)+":"+gradientDots.get(i)+" "); + } + System.out.println(); + } + + + + /** + * Pick a step satisfying the strong wolfe condition from an given from lowerStep and higherStep + * picked on the routine above. + * + * Both lowerStep and higherStep have been evaluated, so we only need to pass the iteration where they have + * been evaluated and save extra evaluations. + * + * We know that lowerStepValue as to be smaller than higherStepValue, and that a point + * satisfying both conditions exists in such interval. + * + * LowerStep always satisfies at least the sufficient decrease + * @return + */ + public double zoom(DifferentiableLineSearchObjective o, double lowerStep, double higherStep, + int lowerStepIter, int higherStepIter){ + + if(debugLevel >=2){ + System.out.println("Entering zoom with " + lowerStep+"-"+higherStep); + } + + double currentStep=-1; + + int zoomIter = 0; + while(zoomIter < 1000){ + if(Math.abs(lowerStep-higherStep) < minZoomDiffTresh){ + o.updateAlpha(lowerStep); + if(debugLevel >= 1){ + steps.add(lowerStep); + functionVals.add(o.getCurrentValue()); + gradientDots.add(o.getCurrentGradient()); + } + foudStep = true; + return lowerStep; + } + + //Cubic interpolation + currentStep = + Interpolation.cubicInterpolation(lowerStep, o.getValue(lowerStepIter), o.getGradient(lowerStepIter), + higherStep, o.getValue(higherStepIter), o.getGradient(higherStepIter)); + + //Safeguard.... should not be required check in what condtions it is required + if(currentStep < 0 ){ + currentStep = (lowerStep+higherStep)/2; + } + if(Double.isNaN(currentStep) || Double.isInfinite(currentStep)){ + currentStep = (lowerStep+higherStep)/2; + } +// currentStep = (lowerStep+higherStep)/2; +// System.out.println("Trying "+currentStep); + o.updateAlpha(currentStep); + if(debugLevel >=1){ + steps.add(currentStep); + functionVals.add(o.getCurrentValue()); + gradientDots.add(o.getCurrentGradient()); + } + if(!WolfeConditions.suficientDecrease(o,c1) + || o.getCurrentValue() >= o.getValue(lowerStepIter)){ + higherStepIter = o.nrIterations; + higherStep = currentStep; + } + //Note when entering here the new step satisfies the sufficent decrease and + // or as a function value that is better than the previous best (lowerStepFunctionValues) + // so we either leave or change the value of the alpha low. + else{ + if(WolfeConditions.sufficientCurvature(o,c1,c2)){ + //Satisfies the both wolf conditions + foudStep = true; + break; + } + //If does not satisfy curvature + if(o.getCurrentGradient()*(higherStep-lowerStep) >= 0){ + higherStep = lowerStep; + higherStepIter = lowerStepIter; + } + lowerStep = currentStep; + lowerStepIter = o.nrIterations; + } + zoomIter++; + } + return currentStep; + } + + public double getInitialGradient() { + return currentInitGradientDot; + + } + + public double getPreviousInitialGradient() { + return previousInitGradientDot; + } + + public double getPreviousStepUsed() { + return previousStepPicked; + } + + +} |