summaryrefslogtreecommitdiff
path: root/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java
diff options
context:
space:
mode:
authordesaicwtf <desaicwtf@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-07-09 16:59:55 +0000
committerdesaicwtf <desaicwtf@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-07-09 16:59:55 +0000
commitbdea91300c85539ab7153ccba58689612f66bb4d (patch)
treee778ffa1ea4d04a239b58c6e6191c0d4549006f0 /gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java
parent0d1d84630a08f1c901cf09b4bcc9356c4165302f (diff)
add optimization library source code
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@204 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java')
-rw-r--r--gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java300
1 files changed, 300 insertions, 0 deletions
diff --git a/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java b/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java
new file mode 100644
index 00000000..5489f2d0
--- /dev/null
+++ b/gi/posterior-regularisation/prjava/src/optimization/linesearch/WolfRuleLineSearch.java
@@ -0,0 +1,300 @@
+package optimization.linesearch;
+
+import java.io.PrintStream;
+import java.util.ArrayList;
+
+import optimization.util.Interpolation;
+
+
+
+
+/**
+ *
+ * @author javg
+ *
+ */
+public class WolfRuleLineSearch implements LineSearchMethod{
+
+ GenericPickFirstStep pickFirstStep;
+
+ double c1 = 1.0E-4;
+ double c2 = 0.9;
+
+ //Application dependent
+ double maxStep=100;
+
+ int extrapolationIteration;
+ int maxExtrapolationIteration = 1000;
+
+
+ double minZoomDiffTresh = 10E-10;
+
+
+ ArrayList<Double> steps;
+ ArrayList<Double> gradientDots;
+ ArrayList<Double> functionVals;
+
+ int debugLevel = 0;
+ boolean foudStep = false;
+
+ public WolfRuleLineSearch(GenericPickFirstStep pickFirstStep){
+ this.pickFirstStep = pickFirstStep;
+
+ }
+
+
+
+
+ public WolfRuleLineSearch(GenericPickFirstStep pickFirstStep, double c1, double c2){
+ this.pickFirstStep = pickFirstStep;
+ initialStep = pickFirstStep.getFirstStep(this);
+ this.c1 = c1;
+ this.c2 = c2;
+ }
+
+ public void setDebugLevel(int level){
+ debugLevel = level;
+ }
+
+ //Experiment
+ double previousStepPicked = -1;;
+ double previousInitGradientDot = -1;
+ double currentInitGradientDot = -1;
+
+ double initialStep;
+
+
+ public void reset(){
+ previousStepPicked = -1;;
+ previousInitGradientDot = -1;
+ currentInitGradientDot = -1;
+ if(steps != null)
+ steps.clear();
+ if(gradientDots != null)
+ gradientDots.clear();
+ if(functionVals != null)
+ functionVals.clear();
+ }
+
+ public void setInitialStep(double initial){
+ initialStep = pickFirstStep.getFirstStep(this);
+ }
+
+
+
+ /**
+ * Implements Wolf Line search as described in nocetal.
+ * This process consists in two stages. The first stage we try to satisfy the
+ * biggest step size that still satisfies the curvature condition. We keep increasing
+ * the initial step size until we find a step satisfying the curvature condition, we return
+ * success, we failed the sufficient increase so we cannot increase more and we can call zoom with
+ * that maximum step, or we pass the minimum in which case we can call zoom the same way.
+ *
+ */
+ public double getStepSize(DifferentiableLineSearchObjective objective){
+ //System.out.println("entering line search");
+
+ foudStep = false;
+ if(debugLevel >= 1){
+ steps = new ArrayList<Double>();
+ gradientDots = new ArrayList<Double>();
+ functionVals =new ArrayList<Double>();
+ }
+
+ //test
+ currentInitGradientDot = objective.getInitialGradient();
+
+
+ double previousValue = objective.getCurrentValue();
+ double previousStep = 0;
+ double currentStep =pickFirstStep.getFirstStep(this);
+ for(extrapolationIteration = 0;
+ extrapolationIteration < maxExtrapolationIteration; extrapolationIteration++){
+
+ objective.updateAlpha(currentStep);
+ double currentValue = objective.getCurrentValue();
+ if(debugLevel >= 1){
+ steps.add(currentStep);
+ functionVals.add(currentValue);
+ gradientDots.add(objective.getCurrentGradient());
+ }
+
+
+ //The current step does not satisfy the sufficient decrease condition anymore
+ // so we cannot get bigger than that calling zoom.
+ if(!WolfeConditions.suficientDecrease(objective,c1)||
+ (extrapolationIteration > 0 && currentValue >= previousValue)){
+ currentStep = zoom(objective,previousStep,currentStep,objective.nrIterations-1,objective.nrIterations);
+ break;
+ }
+
+ //Satisfying both conditions ready to leave
+ if(WolfeConditions.sufficientCurvature(objective,c1,c2)){
+ //Found step
+ foudStep = true;
+ break;
+ }
+
+ /**
+ * This means that we passed the minimum already since the dot product that should be
+ * negative (descent direction) is now positive. So we cannot increase more. On the other hand
+ * since we know the direction is a descent direction the value the objective at the current step
+ * is for sure smaller than the preivous step so we change the order.
+ */
+ if(objective.getCurrentGradient() >= 0){
+ currentStep = zoom(objective,currentStep,previousStep,objective.nrIterations,objective.nrIterations-1);
+ break;
+ }
+
+
+ //Ok, so we can still get a bigger step,
+ double aux = currentStep;
+ //currentStep = currentStep*2;
+ if(Math.abs(currentStep-maxStep)>1.1e-2){
+ currentStep = (currentStep+maxStep)/2;
+ }else{
+ currentStep = currentStep*2;
+ }
+ previousStep = aux;
+ previousValue = currentValue;
+ //Could be done better
+ if(currentStep >= maxStep){
+ System.out.println("Excedded max step...calling zoom with maxStepSize");
+ currentStep = zoom(objective,previousStep,currentStep,objective.nrIterations-1,objective.nrIterations);
+ }
+ }
+ if(!foudStep){
+ System.out.println("Wolfe Rule exceed number of iterations");
+ if(debugLevel >= 1){
+ printSmallWolfeStats(System.out);
+// System.out.println("Line search values");
+// DebugHelpers.getLineSearchGraph(o, direction, originalParameters,origValue, origGradDirectionDot,c1,c2);
+ }
+ return -1;
+ }
+ if(debugLevel >= 1){
+ printSmallWolfeStats(System.out);
+ }
+
+ previousStepPicked = currentStep;
+ previousInitGradientDot = currentInitGradientDot;
+// objective.printLineSearchSteps();
+ return currentStep;
+ }
+
+
+
+
+
+ public void printWolfeStats(PrintStream out){
+ for(int i = 0; i < steps.size(); i++){
+ out.println("Step " + steps.get(i) + " value " + functionVals.get(i) + " dot " + gradientDots.get(i));
+ }
+ }
+
+ public void printSmallWolfeStats(PrintStream out){
+ for(int i = 0; i < steps.size(); i++){
+ out.print(steps.get(i) + ":"+functionVals.get(i)+":"+gradientDots.get(i)+" ");
+ }
+ System.out.println();
+ }
+
+
+
+ /**
+ * Pick a step satisfying the strong wolfe condition from an given from lowerStep and higherStep
+ * picked on the routine above.
+ *
+ * Both lowerStep and higherStep have been evaluated, so we only need to pass the iteration where they have
+ * been evaluated and save extra evaluations.
+ *
+ * We know that lowerStepValue as to be smaller than higherStepValue, and that a point
+ * satisfying both conditions exists in such interval.
+ *
+ * LowerStep always satisfies at least the sufficient decrease
+ * @return
+ */
+ public double zoom(DifferentiableLineSearchObjective o, double lowerStep, double higherStep,
+ int lowerStepIter, int higherStepIter){
+
+ if(debugLevel >=2){
+ System.out.println("Entering zoom with " + lowerStep+"-"+higherStep);
+ }
+
+ double currentStep=-1;
+
+ int zoomIter = 0;
+ while(zoomIter < 1000){
+ if(Math.abs(lowerStep-higherStep) < minZoomDiffTresh){
+ o.updateAlpha(lowerStep);
+ if(debugLevel >= 1){
+ steps.add(lowerStep);
+ functionVals.add(o.getCurrentValue());
+ gradientDots.add(o.getCurrentGradient());
+ }
+ foudStep = true;
+ return lowerStep;
+ }
+
+ //Cubic interpolation
+ currentStep =
+ Interpolation.cubicInterpolation(lowerStep, o.getValue(lowerStepIter), o.getGradient(lowerStepIter),
+ higherStep, o.getValue(higherStepIter), o.getGradient(higherStepIter));
+
+ //Safeguard.... should not be required check in what condtions it is required
+ if(currentStep < 0 ){
+ currentStep = (lowerStep+higherStep)/2;
+ }
+ if(Double.isNaN(currentStep) || Double.isInfinite(currentStep)){
+ currentStep = (lowerStep+higherStep)/2;
+ }
+// currentStep = (lowerStep+higherStep)/2;
+// System.out.println("Trying "+currentStep);
+ o.updateAlpha(currentStep);
+ if(debugLevel >=1){
+ steps.add(currentStep);
+ functionVals.add(o.getCurrentValue());
+ gradientDots.add(o.getCurrentGradient());
+ }
+ if(!WolfeConditions.suficientDecrease(o,c1)
+ || o.getCurrentValue() >= o.getValue(lowerStepIter)){
+ higherStepIter = o.nrIterations;
+ higherStep = currentStep;
+ }
+ //Note when entering here the new step satisfies the sufficent decrease and
+ // or as a function value that is better than the previous best (lowerStepFunctionValues)
+ // so we either leave or change the value of the alpha low.
+ else{
+ if(WolfeConditions.sufficientCurvature(o,c1,c2)){
+ //Satisfies the both wolf conditions
+ foudStep = true;
+ break;
+ }
+ //If does not satisfy curvature
+ if(o.getCurrentGradient()*(higherStep-lowerStep) >= 0){
+ higherStep = lowerStep;
+ higherStepIter = lowerStepIter;
+ }
+ lowerStep = currentStep;
+ lowerStepIter = o.nrIterations;
+ }
+ zoomIter++;
+ }
+ return currentStep;
+ }
+
+ public double getInitialGradient() {
+ return currentInitGradientDot;
+
+ }
+
+ public double getPreviousInitialGradient() {
+ return previousInitGradientDot;
+ }
+
+ public double getPreviousStepUsed() {
+ return previousStepPicked;
+ }
+
+
+}