diff options
author | desaicwtf <desaicwtf@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-06-28 23:14:21 +0000 |
---|---|---|
committer | desaicwtf <desaicwtf@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-06-28 23:14:21 +0000 |
commit | ad418214fe3b3fcd33d81225eb3d3fb08b67f88a (patch) | |
tree | 885ef102fd5508d4693ee3fe374b68a76a7f30fc /gi/posterior-regularisation/prjava/src/hmm/HMMObjective.java | |
parent | f96bf4df7e4a34b42373723cbe38e6c7425e3239 (diff) |
add draft version of POS induction with HMM and L1 Linf constraints
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@47 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'gi/posterior-regularisation/prjava/src/hmm/HMMObjective.java')
-rw-r--r-- | gi/posterior-regularisation/prjava/src/hmm/HMMObjective.java | 348 |
1 files changed, 348 insertions, 0 deletions
diff --git a/gi/posterior-regularisation/prjava/src/hmm/HMMObjective.java b/gi/posterior-regularisation/prjava/src/hmm/HMMObjective.java new file mode 100644 index 00000000..551210c0 --- /dev/null +++ b/gi/posterior-regularisation/prjava/src/hmm/HMMObjective.java @@ -0,0 +1,348 @@ +package hmm;
+
+import gnu.trove.TIntArrayList;
+import optimization.gradientBasedMethods.ProjectedGradientDescent;
+import optimization.gradientBasedMethods.ProjectedObjective;
+import optimization.gradientBasedMethods.stats.OptimizerStats;
+import optimization.linesearch.ArmijoLineSearchMinimizationAlongProjectionArc;
+import optimization.linesearch.InterpolationPickFirstStep;
+import optimization.linesearch.LineSearchMethod;
+import optimization.projections.SimplexProjection;
+import optimization.stopCriteria.CompositeStopingCriteria;
+import optimization.stopCriteria.ProjectedGradientL2Norm;
+import optimization.stopCriteria.StopingCriteria;
+import optimization.stopCriteria.ValueDifference;
+
+public class HMMObjective extends ProjectedObjective{
+
+
+ private static final double GRAD_DIFF = 3;
+ public static double INIT_STEP_SIZE=10;
+ public static double VAL_DIFF=2000;
+
+ private HMM hmm;
+ double[] newPoint ;
+
+ //posterior[sent num][tok num][tag]=index into lambda
+ private int posteriorMap[][][];
+ //projection[word][tag].get(occurence)=index into lambda
+ private TIntArrayList projectionMap[][];
+
+ //Size of the simplex
+ public double scale=10;
+ private SimplexProjection projection;
+
+ private int wordFreq[];
+ private static int MIN_FREQ=3;
+ private int numWordsToProject=0;
+
+ private int n_param;
+
+ public double loglikelihood;
+
+ public HMMObjective(HMM h){
+ hmm=h;
+
+ countWords();
+ buildMap();
+
+ gradient=new double [n_param];
+ projection = new SimplexProjection(scale);
+ newPoint = new double[n_param];
+ setInitialParameters(new double[n_param]);
+
+ }
+
+ /**@brief counts word frequency in the corpus
+ *
+ */
+ private void countWords(){
+ wordFreq=new int [hmm.emit[0].length];
+ for(int i=0;i<hmm.data.length;i++){
+ for(int j=0;j<hmm.data[i].length;j++){
+ wordFreq[hmm.data[i][j]]++;
+ }
+ }
+ }
+
+ /**@brief build posterior and projection indices
+ *
+ */
+ private void buildMap(){
+ //number of sentences hidden states and words
+ int n_states=hmm.trans.length;
+ int n_words=hmm.emit[0].length;
+ int n_sents=hmm.data.length;
+
+ n_param=0;
+ posteriorMap=new int[n_sents][][];
+ projectionMap=new TIntArrayList[n_words][];
+ for(int sentNum=0;sentNum<n_sents;sentNum++){
+ int [] data=hmm.data[sentNum];
+ posteriorMap[sentNum]=new int[data.length][n_states];
+ numWordsToProject=0;
+ for(int i=0;i<data.length;i++){
+ int word=data[i];
+ for(int state=0;state<n_states;state++){
+ if(wordFreq[word]>MIN_FREQ){
+ if(projectionMap[word]==null){
+ projectionMap[word]=new TIntArrayList[n_states];
+ }
+
+ posteriorMap[sentNum][i][state]=n_param;
+ if(projectionMap[word][state]==null){
+ projectionMap[word][state]=new TIntArrayList();
+ numWordsToProject++;
+ }
+ projectionMap[word][state].add(n_param);
+ n_param++;
+ }else{
+
+ posteriorMap[sentNum][i][state]=-1;
+ }
+ }
+ }
+ }
+ }
+
+ @Override
+ public double[] projectPoint(double[] point) {
+ // TODO Auto-generated method stub
+ for(int i=0;i<projectionMap.length;i++){
+
+ if(projectionMap[i]==null){
+ //this word is not constrained
+ continue;
+ }
+
+ for(int j=0;j<projectionMap[i].length;j++){
+ TIntArrayList instances=projectionMap[i][j];
+ double[] toProject = new double[instances.size()];
+
+ for (int k = 0; k < toProject.length; k++) {
+ // System.out.print(instances.get(k) + " ");
+ toProject[k] = point[instances.get(k)];
+ }
+
+ projection.project(toProject);
+ for (int k = 0; k < toProject.length; k++) {
+ newPoint[instances.get(k)]=toProject[k];
+ }
+ }
+ }
+ return newPoint;
+ }
+
+ @Override
+ public double[] getGradient() {
+ // TODO Auto-generated method stub
+ gradientCalls++;
+ return gradient;
+ }
+
+ @Override
+ public double getValue() {
+ // TODO Auto-generated method stub
+ functionCalls++;
+ return loglikelihood;
+ }
+
+
+ @Override
+ public String toString() {
+ // TODO Auto-generated method stub
+ StringBuffer sb = new StringBuffer();
+ for (int i = 0; i < parameters.length; i++) {
+ sb.append(parameters[i]+" ");
+ if(i%100==0){
+ sb.append("\n");
+ }
+ }
+ sb.append("\n");
+ /*
+ for (int i = 0; i < gradient.length; i++) {
+ sb.append(gradient[i]+" ");
+ if(i%100==0){
+ sb.append("\n");
+ }
+ }
+ sb.append("\n");
+ */
+ return sb.toString();
+ }
+
+
+ /**
+ * @param seq
+ * @return posterior probability of each transition
+ */
+ public double [][][]forwardBackward(int sentNum){
+ int [] seq=hmm.data[sentNum];
+ int n_states=hmm.trans.length;
+ double a[][]=new double [seq.length][n_states];
+ double b[][]=new double [seq.length][n_states];
+
+ int len=seq.length;
+
+ boolean constrained=
+ (projectionMap[seq[0]]!=null);
+
+ //initialize the first step
+ for(int i=0;i<n_states;i++){
+ a[0][i]=hmm.emit[i][seq[0]]*hmm.pi[i];
+ if(constrained){
+ a[0][i]*=
+ Math.exp(- parameters[ posteriorMap[sentNum][0][i] ] );
+ }
+ b[len-1][i]=1;
+ }
+
+ loglikelihood+=Math.log(hmm.l1norm(a[0]));
+ hmm.l1normalize(a[0]);
+ hmm.l1normalize(b[len-1]);
+
+ //forward
+ for(int n=1;n<len;n++){
+
+ constrained=
+ (projectionMap[seq[n]]!=null);
+
+ for(int i=0;i<n_states;i++){
+ for(int j=0;j<n_states;j++){
+ a[n][i]+=hmm.trans[j][i]*a[n-1][j];
+ }
+ a[n][i]*=hmm.emit[i][seq[n]];
+
+ if(constrained){
+ a[n][i]*=
+ Math.exp(- parameters[ posteriorMap[sentNum][n][i] ] );
+ }
+
+ }
+ loglikelihood+=Math.log(hmm.l1norm(a[n]));
+ hmm.l1normalize(a[n]);
+ }
+
+ //temp variable for e^{-\lambda}
+ double factor=1;
+ //backward
+ for(int n=len-2;n>=0;n--){
+
+ constrained=
+ (projectionMap[seq[n+1]]!=null);
+
+ for(int i=0;i<n_states;i++){
+ for(int j=0;j<n_states;j++){
+
+ if(constrained){
+ factor=
+ Math.exp(- parameters[ posteriorMap[sentNum][n+1][j] ] );
+ }else{
+ factor=1;
+ }
+
+ b[n][i]+=hmm.trans[i][j]*b[n+1][j]*hmm.emit[j][seq[n+1]]*factor;
+
+ }
+ }
+ hmm.l1normalize(b[n]);
+ }
+
+ //expected transition
+ double p[][][]=new double [seq.length][n_states][n_states];
+ for(int n=0;n<len-1;n++){
+
+ constrained=
+ (projectionMap[seq[n+1]]!=null);
+
+ for(int i=0;i<n_states;i++){
+ for(int j=0;j<n_states;j++){
+
+ if(constrained){
+ factor=
+ Math.exp(- parameters[ posteriorMap[sentNum][n+1][j] ] );
+ }else{
+ factor=1;
+ }
+
+ p[n][i][j]=a[n][i]*hmm.trans[i][j]*
+ hmm.emit[j][seq[n+1]]*b[n+1][j]*factor;
+
+ }
+ }
+
+ hmm.l1normalize(p[n]);
+ }
+ return p;
+ }
+
+ public void optimizeWithProjectedGradientDescent(){
+ LineSearchMethod ls =
+ new ArmijoLineSearchMinimizationAlongProjectionArc
+ (new InterpolationPickFirstStep(INIT_STEP_SIZE));
+
+ OptimizerStats stats = new OptimizerStats();
+
+
+ ProjectedGradientDescent optimizer = new ProjectedGradientDescent(ls);
+ StopingCriteria stopGrad = new ProjectedGradientL2Norm(GRAD_DIFF);
+ StopingCriteria stopValue = new ValueDifference(VAL_DIFF);
+ CompositeStopingCriteria compositeStop = new CompositeStopingCriteria();
+ compositeStop.add(stopGrad);
+ compositeStop.add(stopValue);
+
+ optimizer.setMaxIterations(10);
+ updateFunction();
+ boolean succed = optimizer.optimize(this,stats,compositeStop);
+ System.out.println("Ended optimzation Projected Gradient Descent\n" + stats.prettyPrint(1));
+ if(succed){
+ System.out.println("Ended optimization in " + optimizer.getCurrentIteration());
+ }else{
+ System.out.println("Failed to optimize");
+ }
+ }
+
+ @Override
+ public void setParameters(double[] params) {
+ super.setParameters(params);
+ updateFunction();
+ }
+
+ private void updateFunction(){
+
+ updateCalls++;
+ loglikelihood=0;
+
+ for(int sentNum=0;sentNum<hmm.data.length;sentNum++){
+ double [][][]p=forwardBackward(sentNum);
+
+ for(int n=0;n<p.length-1;n++){
+ for(int i=0;i<p[n].length;i++){
+ if(projectionMap[hmm.data[sentNum][n]]!=null){
+ double posterior=0;
+ for(int j=0;j<p[n][i].length;j++){
+ posterior+=p[n][i][j];
+ }
+ gradient[posteriorMap[sentNum][n][i]]=-posterior;
+ }
+ }
+ }
+
+ //the last state
+ int n=p.length-2;
+ for(int i=0;i<p[n].length;i++){
+ if(projectionMap[hmm.data[sentNum][n+1]]!=null){
+
+ double posterior=0;
+ for(int j=0;j<p[n].length;j++){
+ posterior+=p[n][j][i];
+ }
+ gradient[posteriorMap[sentNum][n+1][i]]=-posterior;
+
+ }
+ }
+ }
+
+ }
+
+}
|