summaryrefslogtreecommitdiff
path: root/gi/pf/transliterations.cc
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
committerPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
commitc3a9ea64251605532c7954959662643a6a927bb7 (patch)
treefed6048a5acdaf3834740107771c2bc48f26fd4d /gi/pf/transliterations.cc
parent867bca3e5fa0cdd63bf032e5859fb5092d9a4ca1 (diff)
parenta45af4a3704531a8382cd231f6445b3a33b598a3 (diff)
merge with upstream
Diffstat (limited to 'gi/pf/transliterations.cc')
-rw-r--r--gi/pf/transliterations.cc334
1 files changed, 334 insertions, 0 deletions
diff --git a/gi/pf/transliterations.cc b/gi/pf/transliterations.cc
new file mode 100644
index 00000000..2200715e
--- /dev/null
+++ b/gi/pf/transliterations.cc
@@ -0,0 +1,334 @@
+#include "transliterations.h"
+
+#include <iostream>
+#include <vector>
+
+#include "boost/shared_ptr.hpp"
+
+#include "backward.h"
+#include "filelib.h"
+#include "tdict.h"
+#include "trule.h"
+#include "filelib.h"
+#include "ccrp_nt.h"
+#include "m.h"
+#include "reachability.h"
+
+using namespace std;
+using namespace std::tr1;
+
+struct TruncatedConditionalLengthModel {
+ TruncatedConditionalLengthModel(unsigned max_src_size, unsigned max_trg_size, double expected_src_to_trg_ratio) :
+ plens(max_src_size+1, vector<prob_t>(max_trg_size+1, 0.0)) {
+ for (unsigned i = 1; i <= max_src_size; ++i) {
+ prob_t z = prob_t::Zero();
+ for (unsigned j = 1; j <= max_trg_size; ++j)
+ z += (plens[i][j] = prob_t(0.01 + exp(Md::log_poisson(j, i * expected_src_to_trg_ratio))));
+ for (unsigned j = 1; j <= max_trg_size; ++j)
+ plens[i][j] /= z;
+ //for (unsigned j = 1; j <= max_trg_size; ++j)
+ // cerr << "P(trg_len=" << j << " | src_len=" << i << ") = " << plens[i][j] << endl;
+ }
+ }
+
+ // return p(tlen | slen) for *chunks* not full words
+ inline const prob_t& operator()(int slen, int tlen) const {
+ return plens[slen][tlen];
+ }
+
+ vector<vector<prob_t> > plens;
+};
+
+struct CondBaseDist {
+ CondBaseDist(unsigned max_src_size, unsigned max_trg_size, double expected_src_to_trg_ratio) :
+ tclm(max_src_size, max_trg_size, expected_src_to_trg_ratio) {}
+
+ prob_t operator()(const vector<WordID>& src, unsigned sf, unsigned st,
+ const vector<WordID>& trg, unsigned tf, unsigned tt) const {
+ prob_t p = tclm(st - sf, tt - tf); // target len | source length ~ TCLM(source len)
+ assert(!"not impl");
+ return p;
+ }
+ inline prob_t operator()(const vector<WordID>& src, const vector<WordID>& trg) const {
+ return (*this)(src, 0, src.size(), trg, 0, trg.size());
+ }
+ TruncatedConditionalLengthModel tclm;
+};
+
+// represents transliteration phrase probabilities, e.g.
+// p( a l - | A l ) , p( o | A w ) , ...
+struct TransliterationChunkConditionalModel {
+ explicit TransliterationChunkConditionalModel(const CondBaseDist& pp0) :
+ d(0.0),
+ strength(1.0),
+ rp0(pp0) {
+ }
+
+ void Summary() const {
+ std::cerr << "Number of conditioning contexts: " << r.size() << std::endl;
+ for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) {
+ std::cerr << TD::GetString(it->first) << " \t(\\alpha = " << it->second.alpha() << ") --------------------------" << std::endl;
+ for (CCRP_NoTable<TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2)
+ std::cerr << " " << i2->second << '\t' << i2->first << std::endl;
+ }
+ }
+
+ int DecrementRule(const TRule& rule) {
+ RuleModelHash::iterator it = r.find(rule.f_);
+ assert(it != r.end());
+ int count = it->second.decrement(rule);
+ if (count) {
+ if (it->second.num_customers() == 0) r.erase(it);
+ }
+ return count;
+ }
+
+ int IncrementRule(const TRule& rule) {
+ RuleModelHash::iterator it = r.find(rule.f_);
+ if (it == r.end()) {
+ it = r.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(strength))).first;
+ }
+ int count = it->second.increment(rule);
+ return count;
+ }
+
+ void IncrementRules(const std::vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ IncrementRule(*rules[i]);
+ }
+
+ void DecrementRules(const std::vector<TRulePtr>& rules) {
+ for (int i = 0; i < rules.size(); ++i)
+ DecrementRule(*rules[i]);
+ }
+
+ prob_t RuleProbability(const TRule& rule) const {
+ prob_t p;
+ RuleModelHash::const_iterator it = r.find(rule.f_);
+ if (it == r.end()) {
+ p = rp0(rule.f_, rule.e_);
+ } else {
+ p = it->second.prob(rule, rp0(rule.f_, rule.e_));
+ }
+ return p;
+ }
+
+ double LogLikelihood(const double& dd, const double& aa) const {
+ if (aa <= -dd) return -std::numeric_limits<double>::infinity();
+ //double llh = Md::log_beta_density(dd, 10, 3) + Md::log_gamma_density(aa, 1, 1);
+ double llh = //Md::log_beta_density(dd, 1, 1) +
+ Md::log_gamma_density(dd + aa, 1, 1);
+ typename std::tr1::unordered_map<std::vector<WordID>, CCRP_NoTable<TRule>, boost::hash<std::vector<WordID> > >::const_iterator it;
+ for (it = r.begin(); it != r.end(); ++it)
+ llh += it->second.log_crp_prob(aa);
+ return llh;
+ }
+
+ struct AlphaResampler {
+ AlphaResampler(const TransliterationChunkConditionalModel& m) : m_(m) {}
+ const TransliterationChunkConditionalModel& m_;
+ double operator()(const double& proposed_strength) const {
+ return m_.LogLikelihood(m_.d, proposed_strength);
+ }
+ };
+
+ void ResampleHyperparameters(MT19937* rng) {
+ typename std::tr1::unordered_map<std::vector<WordID>, CCRP_NoTable<TRule>, boost::hash<std::vector<WordID> > >::iterator it;
+ //const unsigned nloop = 5;
+ const unsigned niterations = 10;
+ //DiscountResampler dr(*this);
+ AlphaResampler ar(*this);
+#if 0
+ for (int iter = 0; iter < nloop; ++iter) {
+ strength = slice_sampler1d(ar, strength, *rng, -d + std::numeric_limits<double>::min(),
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ double min_discount = std::numeric_limits<double>::min();
+ if (strength < 0.0) min_discount -= strength;
+ d = slice_sampler1d(dr, d, *rng, min_discount,
+ 1.0, 0.0, niterations, 100*niterations);
+ }
+#endif
+ strength = slice_sampler1d(ar, strength, *rng, -d,
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ std::cerr << "CTMModel(alpha=" << strength << ") = " << LogLikelihood(d, strength) << std::endl;
+ for (it = r.begin(); it != r.end(); ++it) {
+#if 0
+ it->second.set_discount(d);
+#endif
+ it->second.set_alpha(strength);
+ }
+ }
+
+ prob_t Likelihood() const {
+ prob_t p; p.logeq(LogLikelihood(d, strength));
+ return p;
+ }
+
+ const CondBaseDist& rp0;
+ typedef std::tr1::unordered_map<std::vector<WordID>,
+ CCRP_NoTable<TRule>,
+ boost::hash<std::vector<WordID> > > RuleModelHash;
+ RuleModelHash r;
+ double d, strength;
+};
+
+struct GraphStructure {
+ GraphStructure() : r() {}
+ // leak memory - these are basically static
+ const Reachability* r;
+ bool IsReachable() const { return r->nodes > 0; }
+};
+
+struct ProbabilityEstimates {
+ ProbabilityEstimates() : gs(), backward() {}
+ explicit ProbabilityEstimates(const GraphStructure& g) :
+ gs(&g), backward() {
+ if (g.r->nodes > 0)
+ backward = new float[g.r->nodes];
+ }
+ // leak memory, these are static
+
+ // returns an estimate of the marginal probability
+ double MarginalEstimate() const {
+ if (!backward) return 0;
+ return backward[0];
+ }
+
+ // returns an backward estimate
+ double Backward(int src_covered, int trg_covered) const {
+ if (!backward) return 0;
+ int ind = gs->r->node_addresses[src_covered][trg_covered];
+ if (ind < 0) return 0;
+ return backward[ind];
+ }
+
+ prob_t estp;
+ float* backward;
+ private:
+ const GraphStructure* gs;
+};
+
+struct TransliterationsImpl {
+ TransliterationsImpl(int max_src, int max_trg, double sr, const BackwardEstimator& b) :
+ cp0(max_src, max_trg, sr),
+ tccm(cp0),
+ be(b),
+ kMAX_SRC_CHUNK(max_src),
+ kMAX_TRG_CHUNK(max_trg),
+ kS2T_RATIO(sr),
+ tot_pairs(), tot_mem() {
+ }
+ const CondBaseDist cp0;
+ TransliterationChunkConditionalModel tccm;
+ const BackwardEstimator& be;
+
+ void Initialize(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) {
+ const size_t src_len = src_lets.size();
+ const size_t trg_len = trg_lets.size();
+
+ // init graph structure
+ if (src_len >= graphs.size()) graphs.resize(src_len + 1);
+ if (trg_len >= graphs[src_len].size()) graphs[src_len].resize(trg_len + 1);
+ GraphStructure& gs = graphs[src_len][trg_len];
+ if (!gs.r) {
+ double rat = exp(fabs(log(trg_len / (src_len * kS2T_RATIO))));
+ if (rat > 1.5 || (rat > 2.4 && src_len < 6)) {
+ cerr << " ** Forbidding transliterations of size " << src_len << "," << trg_len << ": " << rat << endl;
+ gs.r = new Reachability(src_len, trg_len, 0, 0);
+ } else {
+ gs.r = new Reachability(src_len, trg_len, kMAX_SRC_CHUNK, kMAX_TRG_CHUNK);
+ }
+ }
+
+ const Reachability& r = *gs.r;
+
+ // init backward estimates
+ if (src >= ests.size()) ests.resize(src + 1);
+ unordered_map<WordID, ProbabilityEstimates>::iterator it = ests[src].find(trg);
+ if (it != ests[src].end()) return; // already initialized
+
+ it = ests[src].insert(make_pair(trg, ProbabilityEstimates(gs))).first;
+ ProbabilityEstimates& est = it->second;
+ if (!gs.r->nodes) return; // not derivable subject to length constraints
+
+ be.InitializeGrid(src_lets, trg_lets, r, kS2T_RATIO, est.backward);
+ cerr << TD::GetString(src_lets) << " ||| " << TD::GetString(trg_lets) << " ||| " << (est.backward[0] / trg_lets.size()) << endl;
+ tot_pairs++;
+ tot_mem += sizeof(float) * gs.r->nodes;
+ }
+
+ void Forbid(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) {
+ const size_t src_len = src_lets.size();
+ const size_t trg_len = trg_lets.size();
+ // TODO
+ }
+
+ prob_t EstimateProbability(WordID s, const vector<WordID>& src, WordID t, const vector<WordID>& trg) const {
+ assert(src.size() < graphs.size());
+ const vector<GraphStructure>& tv = graphs[src.size()];
+ assert(trg.size() < tv.size());
+ const GraphStructure& gs = tv[trg.size()];
+ if (gs.r->nodes == 0)
+ return prob_t::Zero();
+ const unordered_map<WordID, ProbabilityEstimates>::const_iterator it = ests[s].find(t);
+ assert(it != ests[s].end());
+ return it->second.estp;
+ }
+
+ void GraphSummary() const {
+ double to = 0;
+ double tn = 0;
+ double tt = 0;
+ for (int i = 0; i < graphs.size(); ++i) {
+ const vector<GraphStructure>& vt = graphs[i];
+ for (int j = 0; j < vt.size(); ++j) {
+ const GraphStructure& gs = vt[j];
+ if (!gs.r) continue;
+ tt++;
+ for (int k = 0; k < i; ++k) {
+ for (int l = 0; l < j; ++l) {
+ size_t c = gs.r->valid_deltas[k][l].size();
+ if (c) {
+ tn += 1;
+ to += c;
+ }
+ }
+ }
+ }
+ }
+ cerr << " Average nodes = " << (tn / tt) << endl;
+ cerr << "Average out-degree = " << (to / tn) << endl;
+ cerr << " Unique structures = " << tt << endl;
+ cerr << " Unique pairs = " << tot_pairs << endl;
+ cerr << " BEs size = " << (tot_mem / (1024.0*1024.0)) << " MB" << endl;
+ }
+
+ const int kMAX_SRC_CHUNK;
+ const int kMAX_TRG_CHUNK;
+ const double kS2T_RATIO;
+ unsigned tot_pairs;
+ size_t tot_mem;
+ vector<vector<GraphStructure> > graphs; // graphs[src_len][trg_len]
+ vector<unordered_map<WordID, ProbabilityEstimates> > ests; // ests[src][trg]
+};
+
+Transliterations::Transliterations(int max_src, int max_trg, double sr, const BackwardEstimator& be) :
+ pimpl_(new TransliterationsImpl(max_src, max_trg, sr, be)) {}
+Transliterations::~Transliterations() { delete pimpl_; }
+
+void Transliterations::Initialize(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) {
+ pimpl_->Initialize(src, src_lets, trg, trg_lets);
+}
+
+prob_t Transliterations::EstimateProbability(WordID s, const vector<WordID>& src, WordID t, const vector<WordID>& trg) const {
+ return pimpl_->EstimateProbability(s, src,t, trg);
+}
+
+void Transliterations::Forbid(WordID src, const vector<WordID>& src_lets, WordID trg, const vector<WordID>& trg_lets) {
+ pimpl_->Forbid(src, src_lets, trg, trg_lets);
+}
+
+void Transliterations::GraphSummary() const {
+ pimpl_->GraphSummary();
+}
+