diff options
author | Patrick Simianer <p@simianer.de> | 2011-10-19 14:02:34 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-10-19 14:02:34 +0200 |
commit | 9beaeb42b71fa504bfa41a402cb17eb6ac4001af (patch) | |
tree | 0add4afabc526391753e4e6b9443a7bf21e3e2c3 /gi/pf/pfdist.cc | |
parent | ce3b4db94d40c111ede321ac6de2bb061a81c4af (diff) | |
parent | 09297047e446f49804d3f48bf320cdbd38d6396a (diff) |
merge upstream/master
Diffstat (limited to 'gi/pf/pfdist.cc')
-rw-r--r-- | gi/pf/pfdist.cc | 610 |
1 files changed, 610 insertions, 0 deletions
diff --git a/gi/pf/pfdist.cc b/gi/pf/pfdist.cc new file mode 100644 index 00000000..81abd61b --- /dev/null +++ b/gi/pf/pfdist.cc @@ -0,0 +1,610 @@ +#include <iostream> +#include <tr1/memory> +#include <queue> + +#include <boost/functional.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "base_measures.h" +#include "reachability.h" +#include "viterbi.h" +#include "hg.h" +#include "trule.h" +#include "tdict.h" +#include "filelib.h" +#include "dict.h" +#include "sampler.h" +#include "ccrp_nt.h" +#include "ccrp_onetable.h" + +using namespace std; +using namespace tr1; +namespace po = boost::program_options; + +shared_ptr<MT19937> prng; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") + ("particles,p",po::value<unsigned>()->default_value(30),"Number of particles") + ("filter_frequency,f",po::value<unsigned>()->default_value(5),"Number of time steps between filterings") + ("input,i",po::value<string>(),"Read parallel data from") + ("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases") + ("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases") + ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)") + ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)") + ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution") + ("random_seed,S",po::value<uint32_t>(), "Random seed"); + po::options_description clo("Command line options"); + clo.add_options() + ("config", po::value<string>(), "Configuration file") + ("help,h", "Print this help message and exit"); + po::options_description dconfig_options, dcmdline_options; + dconfig_options.add(opts); + dcmdline_options.add(opts).add(clo); + + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (conf->count("config")) { + ifstream config((*conf)["config"].as<string>().c_str()); + po::store(po::parse_config_file(config, dconfig_options), *conf); + } + po::notify(*conf); + + if (conf->count("help") || (conf->count("input") == 0)) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +void ReadParallelCorpus(const string& filename, + vector<vector<WordID> >* f, + vector<vector<WordID> >* e, + set<WordID>* vocab_f, + set<WordID>* vocab_e) { + f->clear(); + e->clear(); + vocab_f->clear(); + vocab_e->clear(); + istream* in; + if (filename == "-") + in = &cin; + else + in = new ifstream(filename.c_str()); + assert(*in); + string line; + const WordID kDIV = TD::Convert("|||"); + vector<WordID> tmp; + while(*in) { + getline(*in, line); + if (line.empty() && !*in) break; + e->push_back(vector<int>()); + f->push_back(vector<int>()); + vector<int>& le = e->back(); + vector<int>& lf = f->back(); + tmp.clear(); + TD::ConvertSentence(line, &tmp); + bool isf = true; + for (unsigned i = 0; i < tmp.size(); ++i) { + const int cur = tmp[i]; + if (isf) { + if (kDIV == cur) { isf = false; } else { + lf.push_back(cur); + vocab_f->insert(cur); + } + } else { + assert(cur != kDIV); + le.push_back(cur); + vocab_e->insert(cur); + } + } + assert(isf == false); + } + if (in != &cin) delete in; +} + +#if 0 +struct MyConditionalModel { + MyConditionalModel(PhraseConditionalBase& rcp0) : rp0(&rcp0), base(prob_t::One()), src_phrases(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {} + + prob_t srcp0(const vector<WordID>& src) const { + prob_t p(1.0 / 3000.0); + p.poweq(src.size()); + prob_t lenp; lenp.logeq(log_poisson(src.size(), 1.0)); + p *= lenp; + return p; + } + + void DecrementRule(const TRule& rule) { + const RuleCRPMap::iterator it = rules.find(rule.f_); + assert(it != rules.end()); + if (it->second.decrement(rule)) { + base /= (*rp0)(rule); + if (it->second.num_customers() == 0) + rules.erase(it); + } + if (src_phrases.decrement(rule.f_)) + base /= srcp0(rule.f_); + } + + void IncrementRule(const TRule& rule) { + RuleCRPMap::iterator it = rules.find(rule.f_); + if (it == rules.end()) + it = rules.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(1,1))).first; + if (it->second.increment(rule)) { + base *= (*rp0)(rule); + } + if (src_phrases.increment(rule.f_)) + base *= srcp0(rule.f_); + } + + void IncrementRules(const vector<TRulePtr>& rules) { + for (int i = 0; i < rules.size(); ++i) + IncrementRule(*rules[i]); + } + + void DecrementRules(const vector<TRulePtr>& rules) { + for (int i = 0; i < rules.size(); ++i) + DecrementRule(*rules[i]); + } + + void IncrementJump(int dist, unsigned src_len) { + assert(src_len > 0); + if (src_jumps[src_len].increment(dist)) + base *= jp0(dist, src_len); + } + + void DecrementJump(int dist, unsigned src_len) { + assert(src_len > 0); + if (src_jumps[src_len].decrement(dist)) + base /= jp0(dist, src_len); + } + + void IncrementJumps(const vector<int>& js, unsigned src_len) { + for (unsigned i = 0; i < js.size(); ++i) + IncrementJump(js[i], src_len); + } + + void DecrementJumps(const vector<int>& js, unsigned src_len) { + for (unsigned i = 0; i < js.size(); ++i) + DecrementJump(js[i], src_len); + } + + // p(jump = dist | src_len , z) + prob_t JumpProbability(int dist, unsigned src_len) { + const prob_t p0 = jp0(dist, src_len); + const double lp = src_jumps[src_len].logprob(dist, log(p0)); + prob_t q; q.logeq(lp); + return q; + } + + // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z) + prob_t RuleProbability(const TRule& rule) const { + const prob_t p0 = (*rp0)(rule); + prob_t srcp; srcp.logeq(src_phrases.logprob(rule.f_, log(srcp0(rule.f_)))); + const RuleCRPMap::const_iterator it = rules.find(rule.f_); + if (it == rules.end()) return srcp * p0; + const double lp = it->second.logprob(rule, log(p0)); + prob_t q; q.logeq(lp); + return q * srcp; + } + + prob_t Likelihood() const { + prob_t p = base; + for (RuleCRPMap::const_iterator it = rules.begin(); + it != rules.end(); ++it) { + prob_t cl; cl.logeq(it->second.log_crp_prob()); + p *= cl; + } + for (unsigned l = 1; l < src_jumps.size(); ++l) { + if (src_jumps[l].num_customers() > 0) { + prob_t q; + q.logeq(src_jumps[l].log_crp_prob()); + p *= q; + } + } + return p; + } + + JumpBase jp0; + const PhraseConditionalBase* rp0; + prob_t base; + typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > RuleCRPMap; + RuleCRPMap rules; + CCRP_NoTable<vector<WordID> > src_phrases; + vector<CCRP_NoTable<int> > src_jumps; +}; + +#endif + +struct MyJointModel { + MyJointModel(PhraseJointBase& rcp0) : + rp0(rcp0), base(prob_t::One()), rules(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {} + + void DecrementRule(const TRule& rule) { + if (rules.decrement(rule)) + base /= rp0(rule); + } + + void IncrementRule(const TRule& rule) { + if (rules.increment(rule)) + base *= rp0(rule); + } + + void IncrementRules(const vector<TRulePtr>& rules) { + for (int i = 0; i < rules.size(); ++i) + IncrementRule(*rules[i]); + } + + void DecrementRules(const vector<TRulePtr>& rules) { + for (int i = 0; i < rules.size(); ++i) + DecrementRule(*rules[i]); + } + + void IncrementJump(int dist, unsigned src_len) { + assert(src_len > 0); + if (src_jumps[src_len].increment(dist)) + base *= jp0(dist, src_len); + } + + void DecrementJump(int dist, unsigned src_len) { + assert(src_len > 0); + if (src_jumps[src_len].decrement(dist)) + base /= jp0(dist, src_len); + } + + void IncrementJumps(const vector<int>& js, unsigned src_len) { + for (unsigned i = 0; i < js.size(); ++i) + IncrementJump(js[i], src_len); + } + + void DecrementJumps(const vector<int>& js, unsigned src_len) { + for (unsigned i = 0; i < js.size(); ++i) + DecrementJump(js[i], src_len); + } + + // p(jump = dist | src_len , z) + prob_t JumpProbability(int dist, unsigned src_len) { + const prob_t p0 = jp0(dist, src_len); + const double lp = src_jumps[src_len].logprob(dist, log(p0)); + prob_t q; q.logeq(lp); + return q; + } + + // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z) + prob_t RuleProbability(const TRule& rule) const { + prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule)))); + return p; + } + + prob_t Likelihood() const { + prob_t p = base; + prob_t q; q.logeq(rules.log_crp_prob()); + p *= q; + for (unsigned l = 1; l < src_jumps.size(); ++l) { + if (src_jumps[l].num_customers() > 0) { + prob_t q; + q.logeq(src_jumps[l].log_crp_prob()); + p *= q; + } + } + return p; + } + + JumpBase jp0; + const PhraseJointBase& rp0; + prob_t base; + CCRP_NoTable<TRule> rules; + vector<CCRP_NoTable<int> > src_jumps; +}; + +struct BackwardEstimate { + BackwardEstimate(const Model1& m1, const vector<WordID>& src, const vector<WordID>& trg) : + model1_(m1), src_(src), trg_(trg) { + } + const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const { + assert(src_.size() == src_cov.size()); + assert(trg_cov <= trg_.size()); + prob_t& e = cache_[src_cov][trg_cov]; + if (e.is_0()) { + if (trg_cov == trg_.size()) { e = prob_t::One(); return e; } + vector<WordID> r(src_.size() + 1); r.clear(); + r.push_back(0); // NULL word + for (int i = 0; i < src_cov.size(); ++i) + if (!src_cov[i]) r.push_back(src_[i]); + const prob_t uniform_alignment(1.0 / r.size()); + e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining) + for (unsigned j = trg_cov; j < trg_.size(); ++j) { + prob_t p; + for (unsigned i = 0; i < r.size(); ++i) + p += model1_(r[i], trg_[j]); + if (p.is_0()) { + cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n"; + abort(); + } + p *= uniform_alignment; + e *= p; + } + } + return e; + } + const Model1& model1_; + const vector<WordID>& src_; + const vector<WordID>& trg_; + mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_; +}; + +struct BackwardEstimateSym { + BackwardEstimateSym(const Model1& m1, + const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) : + model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) { + } + const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const { + assert(src_.size() == src_cov.size()); + assert(trg_cov <= trg_.size()); + prob_t& e = cache_[src_cov][trg_cov]; + if (e.is_0()) { + if (trg_cov == trg_.size()) { e = prob_t::One(); return e; } + vector<WordID> r(src_.size() + 1); r.clear(); + for (int i = 0; i < src_cov.size(); ++i) + if (!src_cov[i]) r.push_back(src_[i]); + r.push_back(0); // NULL word + const prob_t uniform_alignment(1.0 / r.size()); + e.logeq(log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining) + for (unsigned j = trg_cov; j < trg_.size(); ++j) { + prob_t p; + for (unsigned i = 0; i < r.size(); ++i) + p += model1_(r[i], trg_[j]); + if (p.is_0()) { + cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n"; + abort(); + } + p *= uniform_alignment; + e *= p; + } + r.pop_back(); + const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0)); + prob_t inv; + inv.logeq(log_poisson(r.size(), trg_.size() - trg_cov)); + for (unsigned i = 0; i < r.size(); ++i) { + prob_t p; + for (unsigned j = trg_cov - 1; j < trg_.size(); ++j) + p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]); + if (p.is_0()) { + cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n"; + abort(); + } + p *= inv_uniform; + inv *= p; + } + prob_t x = pow(e * inv, 0.5); + e = x; + //cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl; + } + return e; + } + const Model1& model1_; + const Model1& invmodel1_; + const vector<WordID>& src_; + const vector<WordID>& trg_; + mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_; +}; + +struct Particle { + Particle() : weight(prob_t::One()), src_cov(), trg_cov(), prev_pos(-1) {} + prob_t weight; + prob_t gamma_last; + vector<int> src_jumps; + vector<TRulePtr> rules; + vector<bool> src_cv; + int src_cov; + int trg_cov; + int prev_pos; +}; + +ostream& operator<<(ostream& o, const vector<bool>& v) { + for (int i = 0; i < v.size(); ++i) + o << (v[i] ? '1' : '0'); + return o; +} +ostream& operator<<(ostream& o, const Particle& p) { + o << "[cv=" << p.src_cv << " src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " last_pos=" << p.prev_pos << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']'; + return o; +} + +void FilterCrapParticlesAndReweight(vector<Particle>* pps) { + vector<Particle>& ps = *pps; + SampleSet<prob_t> ss; + for (int i = 0; i < ps.size(); ++i) + ss.add(ps[i].weight); + vector<Particle> nps; nps.reserve(ps.size()); + const prob_t uniform_weight(1.0 / ps.size()); + for (int i = 0; i < ps.size(); ++i) { + nps.push_back(ps[prng->SelectSample(ss)]); + nps[i].weight = uniform_weight; + } + nps.swap(ps); +} + +int main(int argc, char** argv) { + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>(); + const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>(); + const unsigned particles = conf["particles"].as<unsigned>(); + const unsigned samples = conf["samples"].as<unsigned>(); + const unsigned rejuv_freq = conf["filter_frequency"].as<unsigned>(); + + if (!conf.count("model1")) { + cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n"; + return 1; + } + if (conf.count("random_seed")) + prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); + else + prng.reset(new MT19937); + MT19937& rng = *prng; + + vector<vector<WordID> > corpuse, corpusf; + set<WordID> vocabe, vocabf; + cerr << "Reading corpus...\n"; + ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe); + cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n"; + cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n"; + assert(corpusf.size() == corpuse.size()); + + const int kLHS = -TD::Convert("X"); + Model1 m1(conf["model1"].as<string>()); + Model1 invm1(conf["inverse_model1"].as<string>()); + +#if 0 + PhraseConditionalBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size()); + MyConditionalModel m(lp0); +#else + PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size()); + MyJointModel m(lp0); +#endif + + cerr << "Initializing reachability limits...\n"; + vector<Particle> ps(corpusf.size()); + vector<Reachability> reaches; reaches.reserve(corpusf.size()); + for (int ci = 0; ci < corpusf.size(); ++ci) + reaches.push_back(Reachability(corpusf[ci].size(), + corpuse[ci].size(), + kMAX_SRC_PHRASE, + kMAX_TRG_PHRASE)); + cerr << "Sampling...\n"; + vector<Particle> tmp_p(10000); // work space + SampleSet<prob_t> pfss; + for (int SS=0; SS < samples; ++SS) { + for (int ci = 0; ci < corpusf.size(); ++ci) { + vector<int>& src = corpusf[ci]; + vector<int>& trg = corpuse[ci]; + m.DecrementRules(ps[ci].rules); + m.DecrementJumps(ps[ci].src_jumps, src.size()); + + //BackwardEstimate be(m1, src, trg); + BackwardEstimateSym be(m1, invm1, src, trg); + const Reachability& r = reaches[ci]; + vector<Particle> lps(particles); + + for (int pi = 0; pi < particles; ++pi) { + Particle& p = lps[pi]; + p.src_cv.resize(src.size(), false); + } + + bool all_complete = false; + while(!all_complete) { + SampleSet<prob_t> ss; + + // all particles have now been extended a bit, we will reweight them now + if (lps[0].trg_cov > 0) + FilterCrapParticlesAndReweight(&lps); + + // loop over all particles and extend them + bool done_nothing = true; + for (int pi = 0; pi < particles; ++pi) { + Particle& p = lps[pi]; + int tic = 0; + while(p.trg_cov < trg.size() && tic < rejuv_freq) { + ++tic; + done_nothing = false; + ss.clear(); + TRule x; x.lhs_ = kLHS; + prob_t z; + int first_uncovered = src.size(); + int last_uncovered = -1; + for (int i = 0; i < src.size(); ++i) { + const bool is_uncovered = !p.src_cv[i]; + if (i < first_uncovered && is_uncovered) first_uncovered = i; + if (is_uncovered && i > last_uncovered) last_uncovered = i; + } + assert(last_uncovered > -1); + assert(first_uncovered < src.size()); + + for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) { + x.e_.push_back(trg[trg_len - 1 + p.trg_cov]); + for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) { + if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue; + + const int last_possible_start = last_uncovered - src_len + 1; + assert(last_possible_start >= 0); + //cerr << src_len << "," << trg_len << " is allowed. E=" << TD::GetString(x.e_) << endl; + //cerr << " first_uncovered=" << first_uncovered << " last_possible_start=" << last_possible_start << endl; + for (int i = first_uncovered; i <= last_possible_start; ++i) { + if (p.src_cv[i]) continue; + assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size + Particle& np = tmp_p[ss.size()]; + np = p; + x.f_.clear(); + int gap_add = 0; + bool bad = false; + prob_t jp = prob_t::One(); + int prev_pos = p.prev_pos; + for (int j = 0; j < src_len; ++j) { + if ((j + i + gap_add) == src.size()) { bad = true; break; } + while ((i+j+gap_add) < src.size() && p.src_cv[i + j + gap_add]) { ++gap_add; } + if ((j + i + gap_add) == src.size()) { bad = true; break; } + np.src_cv[i + j + gap_add] = true; + x.f_.push_back(src[i + j + gap_add]); + jp *= m.JumpProbability(i + j + gap_add - prev_pos, src.size()); + int jump = i + j + gap_add - prev_pos; + assert(jump != 0); + np.src_jumps.push_back(jump); + prev_pos = i + j + gap_add; + } + if (bad) continue; + np.prev_pos = prev_pos; + np.src_cov += x.f_.size(); + np.trg_cov += x.e_.size(); + if (x.f_.size() != src_len) continue; + prob_t rp = m.RuleProbability(x); + np.gamma_last = rp * jp; + const prob_t u = pow(np.gamma_last * be(np.src_cv, np.trg_cov), 0.2); + //cerr << "**rule=" << x << endl; + //cerr << " u=" << log(u) << " rule=" << rp << " jump=" << jp << endl; + ss.add(u); + np.rules.push_back(TRulePtr(new TRule(x))); + z += u; + + const bool completed = (p.trg_cov == trg.size()); + if (completed) { + int last_jump = src.size() - p.prev_pos; + assert(last_jump > 0); + p.src_jumps.push_back(last_jump); + p.weight *= m.JumpProbability(last_jump, src.size()); + } + } + } + } + cerr << "number of edges to consider: " << ss.size() << endl; + const int sampled = rng.SelectSample(ss); + prob_t q_n = ss[sampled] / z; + p = tmp_p[sampled]; + //m.IncrementRule(*p.rules.back()); + p.weight *= p.gamma_last / q_n; + cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl; + cerr << p << endl; + } + } // loop over particles (pi = 0 .. particles) + if (done_nothing) all_complete = true; + } + pfss.clear(); + for (int i = 0; i < lps.size(); ++i) + pfss.add(lps[i].weight); + const int sampled = rng.SelectSample(pfss); + ps[ci] = lps[sampled]; + m.IncrementRules(lps[sampled].rules); + m.IncrementJumps(lps[sampled].src_jumps, src.size()); + for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; } + cerr << "tmp-LLH: " << log(m.Likelihood()) << endl; + } + cerr << "LLH: " << log(m.Likelihood()) << endl; + for (int sni = 0; sni < 5; ++sni) { + for (int i = 0; i < ps[sni].rules.size(); ++i) { cerr << "\t" << ps[sni].rules[i]->AsString() << endl; } + } + } + return 0; +} + |