diff options
author | Patrick Simianer <p@simianer.de> | 2012-03-13 09:24:47 +0100 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2012-03-13 09:24:47 +0100 |
commit | c3a9ea64251605532c7954959662643a6a927bb7 (patch) | |
tree | fed6048a5acdaf3834740107771c2bc48f26fd4d /gi/pf/learn_cfg.cc | |
parent | 867bca3e5fa0cdd63bf032e5859fb5092d9a4ca1 (diff) | |
parent | a45af4a3704531a8382cd231f6445b3a33b598a3 (diff) |
merge with upstream
Diffstat (limited to 'gi/pf/learn_cfg.cc')
-rw-r--r-- | gi/pf/learn_cfg.cc | 428 |
1 files changed, 428 insertions, 0 deletions
diff --git a/gi/pf/learn_cfg.cc b/gi/pf/learn_cfg.cc new file mode 100644 index 00000000..ed1772bf --- /dev/null +++ b/gi/pf/learn_cfg.cc @@ -0,0 +1,428 @@ +#include <iostream> +#include <tr1/memory> +#include <queue> + +#include <boost/functional.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "inside_outside.h" +#include "hg.h" +#include "bottom_up_parser.h" +#include "fdict.h" +#include "grammar.h" +#include "m.h" +#include "trule.h" +#include "tdict.h" +#include "filelib.h" +#include "dict.h" +#include "sampler.h" +#include "ccrp.h" +#include "ccrp_onetable.h" + +using namespace std; +using namespace tr1; +namespace po = boost::program_options; + +shared_ptr<MT19937> prng; +vector<int> nt_vocab; +vector<int> nt_id_to_index; +static unsigned kMAX_RULE_SIZE = 0; +static unsigned kMAX_ARITY = 0; +static bool kALLOW_MIXED = true; // allow rules with mixed terminals and NTs +static bool kHIERARCHICAL_PRIOR = false; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") + ("input,i",po::value<string>(),"Read parallel data from") + ("max_rule_size,m", po::value<unsigned>()->default_value(0), "Maximum rule size (0 for unlimited)") + ("max_arity,a", po::value<unsigned>()->default_value(0), "Maximum number of nonterminals in a rule (0 for unlimited)") + ("no_mixed_rules,M", "Do not mix terminals and nonterminals in a rule RHS") + ("nonterminals,n", po::value<unsigned>()->default_value(1), "Size of nonterminal vocabulary") + ("hierarchical_prior,h", "Use hierarchical prior") + ("random_seed,S",po::value<uint32_t>(), "Random seed"); + po::options_description clo("Command line options"); + clo.add_options() + ("config", po::value<string>(), "Configuration file") + ("help", "Print this help message and exit"); + po::options_description dconfig_options, dcmdline_options; + dconfig_options.add(opts); + dcmdline_options.add(opts).add(clo); + + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (conf->count("config")) { + ifstream config((*conf)["config"].as<string>().c_str()); + po::store(po::parse_config_file(config, dconfig_options), *conf); + } + po::notify(*conf); + + if (conf->count("help") || (conf->count("input") == 0)) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +unsigned ReadCorpus(const string& filename, + vector<vector<WordID> >* e, + set<WordID>* vocab_e) { + e->clear(); + vocab_e->clear(); + istream* in; + if (filename == "-") + in = &cin; + else + in = new ifstream(filename.c_str()); + assert(*in); + string line; + unsigned toks = 0; + while(*in) { + getline(*in, line); + if (line.empty() && !*in) break; + e->push_back(vector<int>()); + vector<int>& le = e->back(); + TD::ConvertSentence(line, &le); + for (unsigned i = 0; i < le.size(); ++i) + vocab_e->insert(le[i]); + toks += le.size(); + } + if (in != &cin) delete in; + return toks; +} + +struct Grid { + // a b c d e + // 0 - 0 - - + vector<int> grid; +}; + +struct BaseRuleModel { + explicit BaseRuleModel(unsigned term_size, + unsigned nonterm_size = 1) : + unif_term(1.0 / term_size), + unif_nonterm(1.0 / nonterm_size) {} + prob_t operator()(const TRule& r) const { + prob_t p; p.logeq(Md::log_poisson(1.0, r.f_.size())); + const prob_t term_prob((2.0 + 0.01*r.f_.size()) / (r.f_.size() + 2)); + const prob_t nonterm_prob(1.0 - term_prob.as_float()); + for (unsigned i = 0; i < r.f_.size(); ++i) { + if (r.f_[i] <= 0) { // nonterminal + if (kALLOW_MIXED) p *= nonterm_prob; + p *= unif_nonterm; + } else { // terminal + if (kALLOW_MIXED) p *= term_prob; + p *= unif_term; + } + } + return p; + } + const prob_t unif_term, unif_nonterm; +}; + +struct HieroLMModel { + explicit HieroLMModel(unsigned vocab_size, unsigned num_nts = 1) : + base(vocab_size, num_nts), + q0(1,1,1,1), + nts(num_nts, CCRP<TRule>(1,1,1,1)) {} + + prob_t Prob(const TRule& r) const { + return nts[nt_id_to_index[-r.lhs_]].prob(r, p0(r)); + } + + inline prob_t p0(const TRule& r) const { + if (kHIERARCHICAL_PRIOR) + return q0.prob(r, base(r)); + else + return base(r); + } + + int Increment(const TRule& r, MT19937* rng) { + const int delta = nts[nt_id_to_index[-r.lhs_]].increment(r, p0(r), rng); + if (kHIERARCHICAL_PRIOR && delta) + q0.increment(r, base(r), rng); + return delta; + // return x.increment(r); + } + + int Decrement(const TRule& r, MT19937* rng) { + const int delta = nts[nt_id_to_index[-r.lhs_]].decrement(r, rng); + if (kHIERARCHICAL_PRIOR && delta) + q0.decrement(r, rng); + return delta; + //return x.decrement(r); + } + + prob_t Likelihood() const { + prob_t p = prob_t::One(); + for (unsigned i = 0; i < nts.size(); ++i) { + prob_t q; q.logeq(nts[i].log_crp_prob()); + p *= q; + for (CCRP<TRule>::const_iterator it = nts[i].begin(); it != nts[i].end(); ++it) { + prob_t tp = p0(it->first); + tp.poweq(it->second.table_counts_.size()); + p *= tp; + } + } + if (kHIERARCHICAL_PRIOR) { + prob_t q; q.logeq(q0.log_crp_prob()); + p *= q; + for (CCRP<TRule>::const_iterator it = q0.begin(); it != q0.end(); ++it) { + prob_t tp = base(it->first); + tp.poweq(it->second.table_counts_.size()); + p *= tp; + } + } + //for (CCRP_OneTable<TRule>::const_iterator it = x.begin(); it != x.end(); ++it) + // p *= base(it->first); + return p; + } + + void ResampleHyperparameters(MT19937* rng) { + for (unsigned i = 0; i < nts.size(); ++i) + nts[i].resample_hyperparameters(rng); + if (kHIERARCHICAL_PRIOR) { + q0.resample_hyperparameters(rng); + cerr << "[base d=" << q0.discount() << ", s=" << q0.strength() << "]"; + } + cerr << " d=" << nts[0].discount() << ", s=" << nts[0].strength() << endl; + } + + const BaseRuleModel base; + CCRP<TRule> q0; + vector<CCRP<TRule> > nts; + //CCRP_OneTable<TRule> x; +}; + +vector<GrammarIter* > tofreelist; + +HieroLMModel* plm; + +struct NPGrammarIter : public GrammarIter, public RuleBin { + NPGrammarIter() : arity() { tofreelist.push_back(this); } + NPGrammarIter(const TRulePtr& inr, const int a, int symbol) : arity(a) { + if (inr) { + r.reset(new TRule(*inr)); + } else { + r.reset(new TRule); + } + TRule& rr = *r; + rr.lhs_ = nt_vocab[0]; + rr.f_.push_back(symbol); + rr.e_.push_back(symbol < 0 ? (1-int(arity)) : symbol); + tofreelist.push_back(this); + } + inline static unsigned NextArity(int cur_a, int symbol) { + return cur_a + (symbol <= 0 ? 1 : 0); + } + virtual int GetNumRules() const { + if (r) return nt_vocab.size(); else return 0; + } + virtual TRulePtr GetIthRule(int i) const { + if (i == 0) return r; + TRulePtr nr(new TRule(*r)); + nr->lhs_ = nt_vocab[i]; + return nr; + } + virtual int Arity() const { + return arity; + } + virtual const RuleBin* GetRules() const { + if (!r) return NULL; else return this; + } + virtual const GrammarIter* Extend(int symbol) const { + const int next_arity = NextArity(arity, symbol); + if (kMAX_ARITY && next_arity > kMAX_ARITY) + return NULL; + if (!kALLOW_MIXED && r) { + bool t1 = r->f_.front() <= 0; + bool t2 = symbol <= 0; + if (t1 != t2) return NULL; + } + if (!kMAX_RULE_SIZE || !r || (r->f_.size() < kMAX_RULE_SIZE)) + return new NPGrammarIter(r, next_arity, symbol); + else + return NULL; + } + const unsigned char arity; + TRulePtr r; +}; + +struct NPGrammar : public Grammar { + virtual const GrammarIter* GetRoot() const { + return new NPGrammarIter; + } +}; + +prob_t TotalProb(const Hypergraph& hg) { + return Inside<prob_t, EdgeProb>(hg); +} + +void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv) { + vector<prob_t> node_probs; + Inside<prob_t, EdgeProb>(hg, &node_probs); + queue<unsigned> q; + q.push(hg.nodes_.size() - 2); + while(!q.empty()) { + unsigned cur_node_id = q.front(); +// cerr << "NODE=" << cur_node_id << endl; + q.pop(); + const Hypergraph::Node& node = hg.nodes_[cur_node_id]; + const unsigned num_in_edges = node.in_edges_.size(); + unsigned sampled_edge = 0; + if (num_in_edges == 1) { + sampled_edge = node.in_edges_[0]; + } else { + //prob_t z; + assert(num_in_edges > 1); + SampleSet<prob_t> ss; + for (unsigned j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; + prob_t p = edge.edge_prob_; + for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) + p *= node_probs[edge.tail_nodes_[k]]; + ss.add(p); +// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl; + //z += p; + } +// for (unsigned j = 0; j < num_in_edges; ++j) { +// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; +// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl; +// } +// cerr << " --- \n"; + sampled_edge = node.in_edges_[rng->SelectSample(ss)]; + } + sampled_deriv->push_back(sampled_edge); + const Hypergraph::Edge& edge = hg.edges_[sampled_edge]; + for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) { + q.push(edge.tail_nodes_[j]); + } + } + for (unsigned i = 0; i < sampled_deriv->size(); ++i) { + cerr << *hg.edges_[(*sampled_deriv)[i]].rule_ << endl; + } +} + +void IncrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroLMModel* plm, MT19937* rng) { + for (unsigned i = 0; i < d.size(); ++i) + plm->Increment(*hg.edges_[d[i]].rule_, rng); +} + +void DecrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroLMModel* plm, MT19937* rng) { + for (unsigned i = 0; i < d.size(); ++i) + plm->Decrement(*hg.edges_[d[i]].rule_, rng); +} + +int main(int argc, char** argv) { + po::variables_map conf; + + InitCommandLine(argc, argv, &conf); + nt_vocab.resize(conf["nonterminals"].as<unsigned>()); + assert(nt_vocab.size() > 0); + assert(nt_vocab.size() < 26); + { + string nt = "X"; + for (unsigned i = 0; i < nt_vocab.size(); ++i) { + if (nt_vocab.size() > 1) nt[0] = ('A' + i); + int pid = TD::Convert(nt); + nt_vocab[i] = -pid; + if (pid >= nt_id_to_index.size()) { + nt_id_to_index.resize(pid + 1, -1); + } + nt_id_to_index[pid] = i; + } + } + vector<GrammarPtr> grammars; + grammars.push_back(GrammarPtr(new NPGrammar)); + + const unsigned samples = conf["samples"].as<unsigned>(); + kMAX_RULE_SIZE = conf["max_rule_size"].as<unsigned>(); + if (kMAX_RULE_SIZE == 1) { + cerr << "Invalid maximum rule size: must be 0 or >1\n"; + return 1; + } + kMAX_ARITY = conf["max_arity"].as<unsigned>(); + if (kMAX_ARITY == 1) { + cerr << "Invalid maximum arity: must be 0 or >1\n"; + return 1; + } + kALLOW_MIXED = !conf.count("no_mixed_rules"); + + kHIERARCHICAL_PRIOR = conf.count("hierarchical_prior"); + + if (conf.count("random_seed")) + prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); + else + prng.reset(new MT19937); + MT19937& rng = *prng; + vector<vector<WordID> > corpuse; + set<WordID> vocabe; + cerr << "Reading corpus...\n"; + const unsigned toks = ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe); + cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n"; + HieroLMModel lm(vocabe.size(), nt_vocab.size()); + + plm = &lm; + ExhaustiveBottomUpParser parser(TD::Convert(-nt_vocab[0]), grammars); + + Hypergraph hg; + const int kGoal = -TD::Convert("Goal"); + const int kLP = FD::Convert("LogProb"); + SparseVector<double> v; v.set_value(kLP, 1.0); + vector<vector<unsigned> > derivs(corpuse.size()); + vector<Lattice> cl(corpuse.size()); + for (int ci = 0; ci < corpuse.size(); ++ci) { + vector<int>& src = corpuse[ci]; + Lattice& lat = cl[ci]; + lat.resize(src.size()); + for (unsigned i = 0; i < src.size(); ++i) + lat[i].push_back(LatticeArc(src[i], 0.0, 1)); + } + for (int SS=0; SS < samples; ++SS) { + const bool is_last = ((samples - 1) == SS); + prob_t dlh = prob_t::One(); + for (int ci = 0; ci < corpuse.size(); ++ci) { + const vector<int>& src = corpuse[ci]; + const Lattice& lat = cl[ci]; + cerr << TD::GetString(src) << endl; + hg.clear(); + parser.Parse(lat, &hg); // exhaustive parse + vector<unsigned>& d = derivs[ci]; + if (!is_last) DecrementDerivation(hg, d, &lm, &rng); + for (unsigned i = 0; i < hg.edges_.size(); ++i) { + TRule& r = *hg.edges_[i].rule_; + if (r.lhs_ == kGoal) + hg.edges_[i].edge_prob_ = prob_t::One(); + else + hg.edges_[i].edge_prob_ = lm.Prob(r); + } + if (!is_last) { + d.clear(); + SampleDerivation(hg, &rng, &d); + IncrementDerivation(hg, derivs[ci], &lm, &rng); + } else { + prob_t p = TotalProb(hg); + dlh *= p; + cerr << " p(sentence) = " << log(p) << "\t" << log(dlh) << endl; + } + if (tofreelist.size() > 200000) { + cerr << "Freeing ... "; + for (unsigned i = 0; i < tofreelist.size(); ++i) + delete tofreelist[i]; + tofreelist.clear(); + cerr << "Freed.\n"; + } + } + double llh = log(lm.Likelihood()); + cerr << "LLH=" << llh << "\tENTROPY=" << (-llh / log(2) / toks) << "\tPPL=" << pow(2, -llh / log(2) / toks) << endl; + if (SS % 10 == 9) lm.ResampleHyperparameters(&rng); + if (is_last) { + double z = log(dlh); + cerr << "TOTAL_PROB=" << z << "\tENTROPY=" << (-z / log(2) / toks) << "\tPPL=" << pow(2, -z / log(2) / toks) << endl; + } + } + for (unsigned i = 0; i < nt_vocab.size(); ++i) + cerr << lm.nts[i] << endl; + return 0; +} + |