summaryrefslogtreecommitdiff
path: root/gi/pf/learn_cfg.cc
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
committerPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
commitc3a9ea64251605532c7954959662643a6a927bb7 (patch)
treefed6048a5acdaf3834740107771c2bc48f26fd4d /gi/pf/learn_cfg.cc
parent867bca3e5fa0cdd63bf032e5859fb5092d9a4ca1 (diff)
parenta45af4a3704531a8382cd231f6445b3a33b598a3 (diff)
merge with upstream
Diffstat (limited to 'gi/pf/learn_cfg.cc')
-rw-r--r--gi/pf/learn_cfg.cc428
1 files changed, 428 insertions, 0 deletions
diff --git a/gi/pf/learn_cfg.cc b/gi/pf/learn_cfg.cc
new file mode 100644
index 00000000..ed1772bf
--- /dev/null
+++ b/gi/pf/learn_cfg.cc
@@ -0,0 +1,428 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/functional.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "inside_outside.h"
+#include "hg.h"
+#include "bottom_up_parser.h"
+#include "fdict.h"
+#include "grammar.h"
+#include "m.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp.h"
+#include "ccrp_onetable.h"
+
+using namespace std;
+using namespace tr1;
+namespace po = boost::program_options;
+
+shared_ptr<MT19937> prng;
+vector<int> nt_vocab;
+vector<int> nt_id_to_index;
+static unsigned kMAX_RULE_SIZE = 0;
+static unsigned kMAX_ARITY = 0;
+static bool kALLOW_MIXED = true; // allow rules with mixed terminals and NTs
+static bool kHIERARCHICAL_PRIOR = false;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_rule_size,m", po::value<unsigned>()->default_value(0), "Maximum rule size (0 for unlimited)")
+ ("max_arity,a", po::value<unsigned>()->default_value(0), "Maximum number of nonterminals in a rule (0 for unlimited)")
+ ("no_mixed_rules,M", "Do not mix terminals and nonterminals in a rule RHS")
+ ("nonterminals,n", po::value<unsigned>()->default_value(1), "Size of nonterminal vocabulary")
+ ("hierarchical_prior,h", "Use hierarchical prior")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+unsigned ReadCorpus(const string& filename,
+ vector<vector<WordID> >* e,
+ set<WordID>* vocab_e) {
+ e->clear();
+ vocab_e->clear();
+ istream* in;
+ if (filename == "-")
+ in = &cin;
+ else
+ in = new ifstream(filename.c_str());
+ assert(*in);
+ string line;
+ unsigned toks = 0;
+ while(*in) {
+ getline(*in, line);
+ if (line.empty() && !*in) break;
+ e->push_back(vector<int>());
+ vector<int>& le = e->back();
+ TD::ConvertSentence(line, &le);
+ for (unsigned i = 0; i < le.size(); ++i)
+ vocab_e->insert(le[i]);
+ toks += le.size();
+ }
+ if (in != &cin) delete in;
+ return toks;
+}
+
+struct Grid {
+ // a b c d e
+ // 0 - 0 - -
+ vector<int> grid;
+};
+
+struct BaseRuleModel {
+ explicit BaseRuleModel(unsigned term_size,
+ unsigned nonterm_size = 1) :
+ unif_term(1.0 / term_size),
+ unif_nonterm(1.0 / nonterm_size) {}
+ prob_t operator()(const TRule& r) const {
+ prob_t p; p.logeq(Md::log_poisson(1.0, r.f_.size()));
+ const prob_t term_prob((2.0 + 0.01*r.f_.size()) / (r.f_.size() + 2));
+ const prob_t nonterm_prob(1.0 - term_prob.as_float());
+ for (unsigned i = 0; i < r.f_.size(); ++i) {
+ if (r.f_[i] <= 0) { // nonterminal
+ if (kALLOW_MIXED) p *= nonterm_prob;
+ p *= unif_nonterm;
+ } else { // terminal
+ if (kALLOW_MIXED) p *= term_prob;
+ p *= unif_term;
+ }
+ }
+ return p;
+ }
+ const prob_t unif_term, unif_nonterm;
+};
+
+struct HieroLMModel {
+ explicit HieroLMModel(unsigned vocab_size, unsigned num_nts = 1) :
+ base(vocab_size, num_nts),
+ q0(1,1,1,1),
+ nts(num_nts, CCRP<TRule>(1,1,1,1)) {}
+
+ prob_t Prob(const TRule& r) const {
+ return nts[nt_id_to_index[-r.lhs_]].prob(r, p0(r));
+ }
+
+ inline prob_t p0(const TRule& r) const {
+ if (kHIERARCHICAL_PRIOR)
+ return q0.prob(r, base(r));
+ else
+ return base(r);
+ }
+
+ int Increment(const TRule& r, MT19937* rng) {
+ const int delta = nts[nt_id_to_index[-r.lhs_]].increment(r, p0(r), rng);
+ if (kHIERARCHICAL_PRIOR && delta)
+ q0.increment(r, base(r), rng);
+ return delta;
+ // return x.increment(r);
+ }
+
+ int Decrement(const TRule& r, MT19937* rng) {
+ const int delta = nts[nt_id_to_index[-r.lhs_]].decrement(r, rng);
+ if (kHIERARCHICAL_PRIOR && delta)
+ q0.decrement(r, rng);
+ return delta;
+ //return x.decrement(r);
+ }
+
+ prob_t Likelihood() const {
+ prob_t p = prob_t::One();
+ for (unsigned i = 0; i < nts.size(); ++i) {
+ prob_t q; q.logeq(nts[i].log_crp_prob());
+ p *= q;
+ for (CCRP<TRule>::const_iterator it = nts[i].begin(); it != nts[i].end(); ++it) {
+ prob_t tp = p0(it->first);
+ tp.poweq(it->second.table_counts_.size());
+ p *= tp;
+ }
+ }
+ if (kHIERARCHICAL_PRIOR) {
+ prob_t q; q.logeq(q0.log_crp_prob());
+ p *= q;
+ for (CCRP<TRule>::const_iterator it = q0.begin(); it != q0.end(); ++it) {
+ prob_t tp = base(it->first);
+ tp.poweq(it->second.table_counts_.size());
+ p *= tp;
+ }
+ }
+ //for (CCRP_OneTable<TRule>::const_iterator it = x.begin(); it != x.end(); ++it)
+ // p *= base(it->first);
+ return p;
+ }
+
+ void ResampleHyperparameters(MT19937* rng) {
+ for (unsigned i = 0; i < nts.size(); ++i)
+ nts[i].resample_hyperparameters(rng);
+ if (kHIERARCHICAL_PRIOR) {
+ q0.resample_hyperparameters(rng);
+ cerr << "[base d=" << q0.discount() << ", s=" << q0.strength() << "]";
+ }
+ cerr << " d=" << nts[0].discount() << ", s=" << nts[0].strength() << endl;
+ }
+
+ const BaseRuleModel base;
+ CCRP<TRule> q0;
+ vector<CCRP<TRule> > nts;
+ //CCRP_OneTable<TRule> x;
+};
+
+vector<GrammarIter* > tofreelist;
+
+HieroLMModel* plm;
+
+struct NPGrammarIter : public GrammarIter, public RuleBin {
+ NPGrammarIter() : arity() { tofreelist.push_back(this); }
+ NPGrammarIter(const TRulePtr& inr, const int a, int symbol) : arity(a) {
+ if (inr) {
+ r.reset(new TRule(*inr));
+ } else {
+ r.reset(new TRule);
+ }
+ TRule& rr = *r;
+ rr.lhs_ = nt_vocab[0];
+ rr.f_.push_back(symbol);
+ rr.e_.push_back(symbol < 0 ? (1-int(arity)) : symbol);
+ tofreelist.push_back(this);
+ }
+ inline static unsigned NextArity(int cur_a, int symbol) {
+ return cur_a + (symbol <= 0 ? 1 : 0);
+ }
+ virtual int GetNumRules() const {
+ if (r) return nt_vocab.size(); else return 0;
+ }
+ virtual TRulePtr GetIthRule(int i) const {
+ if (i == 0) return r;
+ TRulePtr nr(new TRule(*r));
+ nr->lhs_ = nt_vocab[i];
+ return nr;
+ }
+ virtual int Arity() const {
+ return arity;
+ }
+ virtual const RuleBin* GetRules() const {
+ if (!r) return NULL; else return this;
+ }
+ virtual const GrammarIter* Extend(int symbol) const {
+ const int next_arity = NextArity(arity, symbol);
+ if (kMAX_ARITY && next_arity > kMAX_ARITY)
+ return NULL;
+ if (!kALLOW_MIXED && r) {
+ bool t1 = r->f_.front() <= 0;
+ bool t2 = symbol <= 0;
+ if (t1 != t2) return NULL;
+ }
+ if (!kMAX_RULE_SIZE || !r || (r->f_.size() < kMAX_RULE_SIZE))
+ return new NPGrammarIter(r, next_arity, symbol);
+ else
+ return NULL;
+ }
+ const unsigned char arity;
+ TRulePtr r;
+};
+
+struct NPGrammar : public Grammar {
+ virtual const GrammarIter* GetRoot() const {
+ return new NPGrammarIter;
+ }
+};
+
+prob_t TotalProb(const Hypergraph& hg) {
+ return Inside<prob_t, EdgeProb>(hg);
+}
+
+void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv) {
+ vector<prob_t> node_probs;
+ Inside<prob_t, EdgeProb>(hg, &node_probs);
+ queue<unsigned> q;
+ q.push(hg.nodes_.size() - 2);
+ while(!q.empty()) {
+ unsigned cur_node_id = q.front();
+// cerr << "NODE=" << cur_node_id << endl;
+ q.pop();
+ const Hypergraph::Node& node = hg.nodes_[cur_node_id];
+ const unsigned num_in_edges = node.in_edges_.size();
+ unsigned sampled_edge = 0;
+ if (num_in_edges == 1) {
+ sampled_edge = node.in_edges_[0];
+ } else {
+ //prob_t z;
+ assert(num_in_edges > 1);
+ SampleSet<prob_t> ss;
+ for (unsigned j = 0; j < num_in_edges; ++j) {
+ const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
+ prob_t p = edge.edge_prob_;
+ for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k)
+ p *= node_probs[edge.tail_nodes_[k]];
+ ss.add(p);
+// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl;
+ //z += p;
+ }
+// for (unsigned j = 0; j < num_in_edges; ++j) {
+// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
+// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl;
+// }
+// cerr << " --- \n";
+ sampled_edge = node.in_edges_[rng->SelectSample(ss)];
+ }
+ sampled_deriv->push_back(sampled_edge);
+ const Hypergraph::Edge& edge = hg.edges_[sampled_edge];
+ for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
+ q.push(edge.tail_nodes_[j]);
+ }
+ }
+ for (unsigned i = 0; i < sampled_deriv->size(); ++i) {
+ cerr << *hg.edges_[(*sampled_deriv)[i]].rule_ << endl;
+ }
+}
+
+void IncrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroLMModel* plm, MT19937* rng) {
+ for (unsigned i = 0; i < d.size(); ++i)
+ plm->Increment(*hg.edges_[d[i]].rule_, rng);
+}
+
+void DecrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroLMModel* plm, MT19937* rng) {
+ for (unsigned i = 0; i < d.size(); ++i)
+ plm->Decrement(*hg.edges_[d[i]].rule_, rng);
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+
+ InitCommandLine(argc, argv, &conf);
+ nt_vocab.resize(conf["nonterminals"].as<unsigned>());
+ assert(nt_vocab.size() > 0);
+ assert(nt_vocab.size() < 26);
+ {
+ string nt = "X";
+ for (unsigned i = 0; i < nt_vocab.size(); ++i) {
+ if (nt_vocab.size() > 1) nt[0] = ('A' + i);
+ int pid = TD::Convert(nt);
+ nt_vocab[i] = -pid;
+ if (pid >= nt_id_to_index.size()) {
+ nt_id_to_index.resize(pid + 1, -1);
+ }
+ nt_id_to_index[pid] = i;
+ }
+ }
+ vector<GrammarPtr> grammars;
+ grammars.push_back(GrammarPtr(new NPGrammar));
+
+ const unsigned samples = conf["samples"].as<unsigned>();
+ kMAX_RULE_SIZE = conf["max_rule_size"].as<unsigned>();
+ if (kMAX_RULE_SIZE == 1) {
+ cerr << "Invalid maximum rule size: must be 0 or >1\n";
+ return 1;
+ }
+ kMAX_ARITY = conf["max_arity"].as<unsigned>();
+ if (kMAX_ARITY == 1) {
+ cerr << "Invalid maximum arity: must be 0 or >1\n";
+ return 1;
+ }
+ kALLOW_MIXED = !conf.count("no_mixed_rules");
+
+ kHIERARCHICAL_PRIOR = conf.count("hierarchical_prior");
+
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+ MT19937& rng = *prng;
+ vector<vector<WordID> > corpuse;
+ set<WordID> vocabe;
+ cerr << "Reading corpus...\n";
+ const unsigned toks = ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe);
+ cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
+ HieroLMModel lm(vocabe.size(), nt_vocab.size());
+
+ plm = &lm;
+ ExhaustiveBottomUpParser parser(TD::Convert(-nt_vocab[0]), grammars);
+
+ Hypergraph hg;
+ const int kGoal = -TD::Convert("Goal");
+ const int kLP = FD::Convert("LogProb");
+ SparseVector<double> v; v.set_value(kLP, 1.0);
+ vector<vector<unsigned> > derivs(corpuse.size());
+ vector<Lattice> cl(corpuse.size());
+ for (int ci = 0; ci < corpuse.size(); ++ci) {
+ vector<int>& src = corpuse[ci];
+ Lattice& lat = cl[ci];
+ lat.resize(src.size());
+ for (unsigned i = 0; i < src.size(); ++i)
+ lat[i].push_back(LatticeArc(src[i], 0.0, 1));
+ }
+ for (int SS=0; SS < samples; ++SS) {
+ const bool is_last = ((samples - 1) == SS);
+ prob_t dlh = prob_t::One();
+ for (int ci = 0; ci < corpuse.size(); ++ci) {
+ const vector<int>& src = corpuse[ci];
+ const Lattice& lat = cl[ci];
+ cerr << TD::GetString(src) << endl;
+ hg.clear();
+ parser.Parse(lat, &hg); // exhaustive parse
+ vector<unsigned>& d = derivs[ci];
+ if (!is_last) DecrementDerivation(hg, d, &lm, &rng);
+ for (unsigned i = 0; i < hg.edges_.size(); ++i) {
+ TRule& r = *hg.edges_[i].rule_;
+ if (r.lhs_ == kGoal)
+ hg.edges_[i].edge_prob_ = prob_t::One();
+ else
+ hg.edges_[i].edge_prob_ = lm.Prob(r);
+ }
+ if (!is_last) {
+ d.clear();
+ SampleDerivation(hg, &rng, &d);
+ IncrementDerivation(hg, derivs[ci], &lm, &rng);
+ } else {
+ prob_t p = TotalProb(hg);
+ dlh *= p;
+ cerr << " p(sentence) = " << log(p) << "\t" << log(dlh) << endl;
+ }
+ if (tofreelist.size() > 200000) {
+ cerr << "Freeing ... ";
+ for (unsigned i = 0; i < tofreelist.size(); ++i)
+ delete tofreelist[i];
+ tofreelist.clear();
+ cerr << "Freed.\n";
+ }
+ }
+ double llh = log(lm.Likelihood());
+ cerr << "LLH=" << llh << "\tENTROPY=" << (-llh / log(2) / toks) << "\tPPL=" << pow(2, -llh / log(2) / toks) << endl;
+ if (SS % 10 == 9) lm.ResampleHyperparameters(&rng);
+ if (is_last) {
+ double z = log(dlh);
+ cerr << "TOTAL_PROB=" << z << "\tENTROPY=" << (-z / log(2) / toks) << "\tPPL=" << pow(2, -z / log(2) / toks) << endl;
+ }
+ }
+ for (unsigned i = 0; i < nt_vocab.size(); ++i)
+ cerr << lm.nts[i] << endl;
+ return 0;
+}
+