diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2012-03-05 21:36:07 -0500 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2012-03-05 21:36:07 -0500 |
commit | de34b1493df93169c991a1828f951ca5abc00cae (patch) | |
tree | 81f691d66cf5e3c3775634a266482ea9b7163081 /gi/pf/conditional_pseg.h | |
parent | 2048ac9943e2695a75b5f0303ca869e66ee32202 (diff) |
tie hyperparameters for translation distributions; support theta < 0 for PYPLM
Diffstat (limited to 'gi/pf/conditional_pseg.h')
-rw-r--r-- | gi/pf/conditional_pseg.h | 68 |
1 files changed, 53 insertions, 15 deletions
diff --git a/gi/pf/conditional_pseg.h b/gi/pf/conditional_pseg.h index ef73e332..8202778b 100644 --- a/gi/pf/conditional_pseg.h +++ b/gi/pf/conditional_pseg.h @@ -17,21 +17,66 @@ template <typename ConditionalBaseMeasure> struct MConditionalTranslationModel { explicit MConditionalTranslationModel(ConditionalBaseMeasure& rcp0) : - rp0(rcp0), lambdas(1, prob_t::One()), p0s(1) {} + rp0(rcp0), d(0.5), strength(1.0), lambdas(1, prob_t::One()), p0s(1) {} void Summary() const { std::cerr << "Number of conditioning contexts: " << r.size() << std::endl; for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { std::cerr << TD::GetString(it->first) << " \t(d=" << it->second.discount() << ",s=" << it->second.strength() << ") --------------------------" << std::endl; for (MFCR<1,TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) - std::cerr << " " << -1 << '\t' << i2->first << std::endl; + std::cerr << " " << i2->second.total_dish_count_ << '\t' << i2->first << std::endl; } } + double log_likelihood(const double& dd, const double& aa) const { + if (aa <= -dd) return -std::numeric_limits<double>::infinity(); + //double llh = Md::log_beta_density(dd, 10, 3) + Md::log_gamma_density(aa, 1, 1); + double llh = Md::log_beta_density(dd, 1, 1) + + Md::log_gamma_density(dd + aa, 1, 1); + typename std::tr1::unordered_map<std::vector<WordID>, MFCR<1,TRule>, boost::hash<std::vector<WordID> > >::const_iterator it; + for (it = r.begin(); it != r.end(); ++it) + llh += it->second.log_crp_prob(dd, aa); + return llh; + } + + struct DiscountResampler { + DiscountResampler(const MConditionalTranslationModel& m) : m_(m) {} + const MConditionalTranslationModel& m_; + double operator()(const double& proposed_discount) const { + return m_.log_likelihood(proposed_discount, m_.strength); + } + }; + + struct AlphaResampler { + AlphaResampler(const MConditionalTranslationModel& m) : m_(m) {} + const MConditionalTranslationModel& m_; + double operator()(const double& proposed_strength) const { + return m_.log_likelihood(m_.d, proposed_strength); + } + }; + void ResampleHyperparameters(MT19937* rng) { - for (RuleModelHash::iterator it = r.begin(); it != r.end(); ++it) - it->second.resample_hyperparameters(rng); - } + const unsigned nloop = 5; + const unsigned niterations = 10; + DiscountResampler dr(*this); + AlphaResampler ar(*this); + for (int iter = 0; iter < nloop; ++iter) { + strength = slice_sampler1d(ar, strength, *rng, -d + std::numeric_limits<double>::min(), + std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); + double min_discount = std::numeric_limits<double>::min(); + if (strength < 0.0) min_discount -= strength; + d = slice_sampler1d(dr, d, *rng, min_discount, + 1.0, 0.0, niterations, 100*niterations); + } + strength = slice_sampler1d(ar, strength, *rng, -d, + std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations); + typename std::tr1::unordered_map<std::vector<WordID>, MFCR<1,TRule>, boost::hash<std::vector<WordID> > >::iterator it; + std::cerr << "MConditionalTranslationModel(d=" << d << ",s=" << strength << ") = " << log_likelihood(d, strength) << std::endl; + for (it = r.begin(); it != r.end(); ++it) { + it->second.set_discount(d); + it->second.set_strength(strength); + } + } int DecrementRule(const TRule& rule, MT19937* rng) { RuleModelHash::iterator it = r.find(rule.f_); @@ -46,7 +91,7 @@ struct MConditionalTranslationModel { int IncrementRule(const TRule& rule, MT19937* rng) { RuleModelHash::iterator it = r.find(rule.f_); if (it == r.end()) { - it = r.insert(make_pair(rule.f_, MFCR<1,TRule>(1.0, 1.0, 1.0, 1.0, 1e-9, 4.0))).first; + it = r.insert(make_pair(rule.f_, MFCR<1,TRule>(d, strength))).first; } p0s[0] = rp0(rule); TableCount delta = it->second.increment(rule, p0s.begin(), lambdas.begin(), rng); @@ -66,15 +111,7 @@ struct MConditionalTranslationModel { } prob_t Likelihood() const { - prob_t p = prob_t::One(); -#if 0 - for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { - prob_t q; q.logeq(it->second.log_crp_prob()); - p *= q; - for (CCRP_NoTable<TRule>::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) - p *= rp0(i2->first); - } -#endif + prob_t p; p.logeq(log_likelihood(d, strength)); return p; } @@ -83,6 +120,7 @@ struct MConditionalTranslationModel { MFCR<1, TRule>, boost::hash<std::vector<WordID> > > RuleModelHash; RuleModelHash r; + double d, strength; std::vector<prob_t> lambdas; mutable std::vector<prob_t> p0s; }; |