summaryrefslogtreecommitdiff
path: root/gi/pf/cbgi.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cab.ark.cs.cmu.edu>2012-10-02 00:19:43 -0400
committerChris Dyer <cdyer@cab.ark.cs.cmu.edu>2012-10-02 00:19:43 -0400
commit925087356b853e2099c1b60d8b757d7aa02121a9 (patch)
tree579925c5c9d3da51f43018a5c6d1c4dfbb72b089 /gi/pf/cbgi.cc
parentea79e535d69f6854d01c62e3752971fb6730d8e7 (diff)
cdec cleanup, remove bayesian stuff, parsing stuff
Diffstat (limited to 'gi/pf/cbgi.cc')
-rw-r--r--gi/pf/cbgi.cc330
1 files changed, 0 insertions, 330 deletions
diff --git a/gi/pf/cbgi.cc b/gi/pf/cbgi.cc
deleted file mode 100644
index 97f1ba34..00000000
--- a/gi/pf/cbgi.cc
+++ /dev/null
@@ -1,330 +0,0 @@
-#include <queue>
-#include <sstream>
-#include <iostream>
-
-#include <boost/unordered_map.hpp>
-#include <boost/functional/hash.hpp>
-
-#include "sampler.h"
-#include "filelib.h"
-#include "hg_io.h"
-#include "hg.h"
-#include "ccrp_nt.h"
-#include "trule.h"
-#include "inside_outside.h"
-
-using namespace std;
-using namespace std::tr1;
-
-double log_poisson(unsigned x, const double& lambda) {
- assert(lambda > 0.0);
- return log(lambda) * x - lgamma(x + 1) - lambda;
-}
-
-double log_decay(unsigned x, const double& b) {
- assert(b > 1.0);
- assert(x > 0);
- return log(b - 1) - x * log(b);
-}
-
-struct SimpleBase {
- SimpleBase(unsigned esize, unsigned fsize, unsigned ntsize = 144) :
- uniform_e(-log(esize)),
- uniform_f(-log(fsize)),
- uniform_nt(-log(ntsize)) {
- }
-
- // binomial coefficient
- static double choose(unsigned n, unsigned k) {
- return exp(lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1));
- }
-
- // count the number of patterns of terminals and NTs in the rule, given elen and flen
- static double log_number_of_patterns(const unsigned flen, const unsigned elen) {
- static vector<vector<double> > counts;
- if (elen >= counts.size()) counts.resize(elen + 1);
- if (flen >= counts[elen].size()) counts[elen].resize(flen + 1);
- double& count = counts[elen][flen];
- if (count) return log(count);
- const unsigned max_arity = min(elen, flen);
- for (unsigned a = 0; a <= max_arity; ++a)
- count += choose(elen, a) * choose(flen, a);
- return log(count);
- }
-
- // return logp0 of rule | LHS
- double operator()(const TRule& rule) const {
- const unsigned flen = rule.f_.size();
- const unsigned elen = rule.e_.size();
-#if 0
- double p = 0;
- p += log_poisson(flen, 0.5); // flen ~Pois(0.5)
- p += log_poisson(elen, flen); // elen | flen ~Pois(flen)
- p -= log_number_of_patterns(flen, elen); // pattern | flen,elen ~Uniform
- for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS
- if (rule.f_[i] <= 0) // according to pattern
- p += uniform_nt; // draw NT ~Uniform
- else
- p += uniform_f; // draw f terminal ~Uniform
- }
- p -= lgamma(rule.Arity() + 1); // draw permutation ~Uniform
- for (unsigned i = 0; i < elen; ++i) { // for each position in e-RHS
- if (rule.e_[i] > 0) // according to pattern
- p += uniform_e; // draw e|f term ~Uniform
- // TODO this should prob be model 1
- }
-#else
- double p = 0;
- bool is_abstract = rule.f_[0] <= 0;
- p += log(0.5);
- if (is_abstract) {
- if (flen == 2) p += log(0.99); else p += log(0.01);
- } else {
- p += log_decay(flen, 3);
- }
-
- for (unsigned i = 0; i < flen; ++i) { // for each position in f-RHS
- if (rule.f_[i] <= 0) // according to pattern
- p += uniform_nt; // draw NT ~Uniform
- else
- p += uniform_f; // draw f terminal ~Uniform
- }
-#endif
- return p;
- }
- const double uniform_e;
- const double uniform_f;
- const double uniform_nt;
- vector<double> arities;
-};
-
-MT19937* rng = NULL;
-
-template <typename Base>
-struct MHSamplerEdgeProb {
- MHSamplerEdgeProb(const Hypergraph& hg,
- const map<int, CCRP_NoTable<TRule> >& rdp,
- const Base& logp0,
- const bool exclude_multiword_terminals) : edge_probs(hg.edges_.size()) {
- for (int i = 0; i < edge_probs.size(); ++i) {
- const TRule& rule = *hg.edges_[i].rule_;
- const map<int, CCRP_NoTable<TRule> >::const_iterator it = rdp.find(rule.lhs_);
- assert(it != rdp.end());
- const CCRP_NoTable<TRule>& crp = it->second;
- edge_probs[i].logeq(crp.logprob(rule, logp0(rule)));
- if (exclude_multiword_terminals && rule.f_[0] > 0 && rule.f_.size() > 1)
- edge_probs[i] = prob_t::Zero();
- }
- }
- inline prob_t operator()(const Hypergraph::Edge& e) const {
- return edge_probs[e.id_];
- }
- prob_t DerivationProb(const vector<int>& d) const {
- prob_t p = prob_t::One();
- for (unsigned i = 0; i < d.size(); ++i)
- p *= edge_probs[d[i]];
- return p;
- }
- vector<prob_t> edge_probs;
-};
-
-template <typename Base>
-struct ModelAndData {
- ModelAndData() :
- base_lh(prob_t::One()),
- logp0(10000, 10000),
- mh_samples(),
- mh_rejects() {}
-
- void SampleCorpus(const string& hgpath, int i);
- void ResampleHyperparameters() {
- for (map<int, CCRP_NoTable<TRule> >::iterator it = rules.begin(); it != rules.end(); ++it)
- it->second.resample_hyperparameters(rng);
- }
-
- CCRP_NoTable<TRule>& RuleCRP(int lhs) {
- map<int, CCRP_NoTable<TRule> >::iterator it = rules.find(lhs);
- if (it == rules.end()) {
- rules.insert(make_pair(lhs, CCRP_NoTable<TRule>(1,1)));
- it = rules.find(lhs);
- }
- return it->second;
- }
-
- void IncrementRule(const TRule& rule) {
- CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_);
- if (crp.increment(rule)) {
- prob_t p; p.logeq(logp0(rule));
- base_lh *= p;
- }
- }
-
- void DecrementRule(const TRule& rule) {
- CCRP_NoTable<TRule>& crp = RuleCRP(rule.lhs_);
- if (crp.decrement(rule)) {
- prob_t p; p.logeq(logp0(rule));
- base_lh /= p;
- }
- }
-
- void DecrementDerivation(const Hypergraph& hg, const vector<int>& d) {
- for (unsigned i = 0; i < d.size(); ++i) {
- const TRule& rule = *hg.edges_[d[i]].rule_;
- DecrementRule(rule);
- }
- }
-
- void IncrementDerivation(const Hypergraph& hg, const vector<int>& d) {
- for (unsigned i = 0; i < d.size(); ++i) {
- const TRule& rule = *hg.edges_[d[i]].rule_;
- IncrementRule(rule);
- }
- }
-
- prob_t Likelihood() const {
- prob_t p = prob_t::One();
- for (map<int, CCRP_NoTable<TRule> >::const_iterator it = rules.begin(); it != rules.end(); ++it) {
- prob_t q; q.logeq(it->second.log_crp_prob());
- p *= q;
- }
- p *= base_lh;
- return p;
- }
-
- void ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_derivation);
-
- map<int, CCRP_NoTable<TRule> > rules; // [lhs] -> distribution over RHSs
- prob_t base_lh;
- SimpleBase logp0;
- vector<vector<int> > samples; // sampled derivations
- unsigned int mh_samples;
- unsigned int mh_rejects;
-};
-
-template <typename Base>
-void ModelAndData<Base>::SampleCorpus(const string& hgpath, int n) {
- vector<Hypergraph> hgs(n); hgs.clear();
- boost::unordered_map<TRule, unsigned> acc;
- map<int, unsigned> tot;
- for (int i = 0; i < n; ++i) {
- ostringstream os;
- os << hgpath << '/' << i << ".json.gz";
- if (!FileExists(os.str())) continue;
- hgs.push_back(Hypergraph());
- ReadFile rf(os.str());
- HypergraphIO::ReadFromJSON(rf.stream(), &hgs.back());
- }
- cerr << "Read " << hgs.size() << " alignment hypergraphs.\n";
- samples.resize(hgs.size());
- const unsigned SAMPLES = 2000;
- const unsigned burnin = 3 * SAMPLES / 4;
- const unsigned every = 20;
- for (unsigned s = 0; s < SAMPLES; ++s) {
- if (s % 10 == 0) {
- if (s > 0) { cerr << endl; ResampleHyperparameters(); }
- cerr << "[" << s << " LLH=" << log(Likelihood()) << " REJECTS=" << ((double)mh_rejects / mh_samples) << " LHS's=" << rules.size() << " base=" << log(base_lh) << "] ";
- }
- cerr << '.';
- for (unsigned i = 0; i < hgs.size(); ++i) {
- ResampleDerivation(hgs[i], &samples[i]);
- if (s > burnin && s % every == 0) {
- for (unsigned j = 0; j < samples[i].size(); ++j) {
- const TRule& rule = *hgs[i].edges_[samples[i][j]].rule_;
- ++acc[rule];
- ++tot[rule.lhs_];
- }
- }
- }
- }
- cerr << endl;
- for (boost::unordered_map<TRule,unsigned>::iterator it = acc.begin(); it != acc.end(); ++it) {
- cout << it->first << " MyProb=" << log(it->second)-log(tot[it->first.lhs_]) << endl;
- }
-}
-
-template <typename Base>
-void ModelAndData<Base>::ResampleDerivation(const Hypergraph& hg, vector<int>* sampled_deriv) {
- vector<int> cur;
- cur.swap(*sampled_deriv);
-
- const prob_t p_cur = Likelihood();
- DecrementDerivation(hg, cur);
- if (cur.empty()) {
- // first iteration, create restaurants
- for (int i = 0; i < hg.edges_.size(); ++i)
- RuleCRP(hg.edges_[i].rule_->lhs_);
- }
- MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, cur.empty());
-// MHSamplerEdgeProb<SimpleBase> wf(hg, rules, logp0, false);
- const prob_t q_cur = wf.DerivationProb(cur);
- vector<prob_t> node_probs;
- Inside<prob_t, MHSamplerEdgeProb<SimpleBase> >(hg, &node_probs, wf);
- queue<unsigned> q;
- q.push(hg.nodes_.size() - 3);
- while(!q.empty()) {
- unsigned cur_node_id = q.front();
-// cerr << "NODE=" << cur_node_id << endl;
- q.pop();
- const Hypergraph::Node& node = hg.nodes_[cur_node_id];
- const unsigned num_in_edges = node.in_edges_.size();
- unsigned sampled_edge = 0;
- if (num_in_edges == 1) {
- sampled_edge = node.in_edges_[0];
- } else {
- prob_t z;
- assert(num_in_edges > 1);
- SampleSet<prob_t> ss;
- for (unsigned j = 0; j < num_in_edges; ++j) {
- const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
- prob_t p = wf.edge_probs[edge.id_]; // edge proposal prob
- for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k)
- p *= node_probs[edge.tail_nodes_[k]];
- ss.add(p);
-// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl;
- z += p;
- }
-// for (unsigned j = 0; j < num_in_edges; ++j) {
-// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]];
-// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl;
-// }
-// cerr << " --- \n";
- sampled_edge = node.in_edges_[rng->SelectSample(ss)];
- }
- sampled_deriv->push_back(sampled_edge);
- const Hypergraph::Edge& edge = hg.edges_[sampled_edge];
- for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) {
- q.push(edge.tail_nodes_[j]);
- }
- }
- IncrementDerivation(hg, *sampled_deriv);
-
-// cerr << "sampled derivation contains " << sampled_deriv->size() << " edges\n";
-// cerr << "DERIV:\n";
-// for (int i = 0; i < sampled_deriv->size(); ++i) {
-// cerr << " " << hg.edges_[(*sampled_deriv)[i]].rule_->AsString() << endl;
-// }
-
- if (cur.empty()) return; // accept first sample
-
- ++mh_samples;
- // only need to do MH if proposal is different to current state
- if (cur != *sampled_deriv) {
- const prob_t q_prop = wf.DerivationProb(*sampled_deriv);
- const prob_t p_prop = Likelihood();
- if (!rng->AcceptMetropolisHastings(p_prop, p_cur, q_prop, q_cur)) {
- ++mh_rejects;
- DecrementDerivation(hg, *sampled_deriv);
- IncrementDerivation(hg, cur);
- swap(cur, *sampled_deriv);
- }
- }
-}
-
-int main(int argc, char** argv) {
- rng = new MT19937;
- ModelAndData<SimpleBase> m;
- m.SampleCorpus("./hgs", 50);
- // m.SampleCorpus("./btec/hgs", 5000);
- return 0;
-}
-