diff options
author | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-04-07 16:58:55 +0200 |
---|---|---|
committer | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-04-07 16:58:55 +0200 |
commit | e91553ae70907e243a554e4a549c53df57b78478 (patch) | |
tree | a4d044093f5937d0152b573c99914746b5a2b8ef /gi/pf/bayes_lattice_score.cc | |
parent | fb714888562845a8ae10fd4411cf199961193833 (diff) | |
parent | 2fe4323cbfc34de906a2869f98c017b41e4ccae7 (diff) |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'gi/pf/bayes_lattice_score.cc')
-rw-r--r-- | gi/pf/bayes_lattice_score.cc | 309 |
1 files changed, 309 insertions, 0 deletions
diff --git a/gi/pf/bayes_lattice_score.cc b/gi/pf/bayes_lattice_score.cc new file mode 100644 index 00000000..70cb8dc2 --- /dev/null +++ b/gi/pf/bayes_lattice_score.cc @@ -0,0 +1,309 @@ +#include <iostream> +#include <queue> + +#include <boost/functional.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "inside_outside.h" +#include "hg.h" +#include "hg_io.h" +#include "bottom_up_parser.h" +#include "fdict.h" +#include "grammar.h" +#include "m.h" +#include "trule.h" +#include "tdict.h" +#include "filelib.h" +#include "dict.h" +#include "sampler.h" +#include "ccrp.h" +#include "ccrp_onetable.h" + +using namespace std; +using namespace tr1; +namespace po = boost::program_options; + +boost::shared_ptr<MT19937> prng; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") + ("input,i",po::value<string>(),"Read parallel data from") + ("random_seed,S",po::value<uint32_t>(), "Random seed"); + po::options_description clo("Command line options"); + clo.add_options() + ("config", po::value<string>(), "Configuration file") + ("help", "Print this help message and exit"); + po::options_description dconfig_options, dcmdline_options; + dconfig_options.add(opts); + dcmdline_options.add(opts).add(clo); + + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (conf->count("config")) { + ifstream config((*conf)["config"].as<string>().c_str()); + po::store(po::parse_config_file(config, dconfig_options), *conf); + } + po::notify(*conf); + + if (conf->count("help") || (conf->count("input") == 0)) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +unsigned ReadCorpus(const string& filename, + vector<Lattice>* e, + set<WordID>* vocab_e) { + e->clear(); + vocab_e->clear(); + ReadFile rf(filename); + istream* in = rf.stream(); + assert(*in); + string line; + unsigned toks = 0; + while(*in) { + getline(*in, line); + if (line.empty() && !*in) break; + e->push_back(Lattice()); + Lattice& le = e->back(); + LatticeTools::ConvertTextOrPLF(line, & le); + for (unsigned i = 0; i < le.size(); ++i) + for (unsigned j = 0; j < le[i].size(); ++j) + vocab_e->insert(le[i][j].label); + toks += le.size(); + } + return toks; +} + +struct BaseModel { + explicit BaseModel(unsigned tc) : + unif(1.0 / tc), p(prob_t::One()) {} + prob_t prob(const TRule& r) const { + return unif; + } + void increment(const TRule& r, MT19937* rng) { + p *= prob(r); + } + void decrement(const TRule& r, MT19937* rng) { + p /= prob(r); + } + prob_t Likelihood() const { + return p; + } + const prob_t unif; + prob_t p; +}; + +struct UnigramModel { + explicit UnigramModel(unsigned tc) : base(tc), crp(1,1,1,1), glue(1,1,1,1) {} + BaseModel base; + CCRP<TRule> crp; + CCRP<TRule> glue; + + prob_t Prob(const TRule& r) const { + if (r.Arity() != 0) { + return glue.prob(r, prob_t(0.5)); + } + return crp.prob(r, base.prob(r)); + } + + int Increment(const TRule& r, MT19937* rng) { + if (r.Arity() != 0) { + glue.increment(r, 0.5, rng); + return 0; + } else { + if (crp.increment(r, base.prob(r), rng)) { + base.increment(r, rng); + return 1; + } + return 0; + } + } + + int Decrement(const TRule& r, MT19937* rng) { + if (r.Arity() != 0) { + glue.decrement(r, rng); + return 0; + } else { + if (crp.decrement(r, rng)) { + base.decrement(r, rng); + return -1; + } + return 0; + } + } + + prob_t Likelihood() const { + prob_t p; + p.logeq(crp.log_crp_prob() + glue.log_crp_prob()); + p *= base.Likelihood(); + return p; + } + + void ResampleHyperparameters(MT19937* rng) { + crp.resample_hyperparameters(rng); + glue.resample_hyperparameters(rng); + cerr << " d=" << crp.discount() << ", s=" << crp.strength() << "\t STOP d=" << glue.discount() << ", s=" << glue.strength() << endl; + } +}; + +UnigramModel* plm; + +void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv) { + vector<prob_t> node_probs; + Inside<prob_t, EdgeProb>(hg, &node_probs); + queue<unsigned> q; + q.push(hg.nodes_.size() - 2); + while(!q.empty()) { + unsigned cur_node_id = q.front(); +// cerr << "NODE=" << cur_node_id << endl; + q.pop(); + const Hypergraph::Node& node = hg.nodes_[cur_node_id]; + const unsigned num_in_edges = node.in_edges_.size(); + unsigned sampled_edge = 0; + if (num_in_edges == 1) { + sampled_edge = node.in_edges_[0]; + } else { + //prob_t z; + assert(num_in_edges > 1); + SampleSet<prob_t> ss; + for (unsigned j = 0; j < num_in_edges; ++j) { + const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; + prob_t p = edge.edge_prob_; + for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) + p *= node_probs[edge.tail_nodes_[k]]; + ss.add(p); +// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl; + //z += p; + } +// for (unsigned j = 0; j < num_in_edges; ++j) { +// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; +// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl; +// } +// cerr << " --- \n"; + sampled_edge = node.in_edges_[rng->SelectSample(ss)]; + } + sampled_deriv->push_back(sampled_edge); + const Hypergraph::Edge& edge = hg.edges_[sampled_edge]; + for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) { + q.push(edge.tail_nodes_[j]); + } + } +// for (unsigned i = 0; i < sampled_deriv->size(); ++i) { +// cerr << *hg.edges_[(*sampled_deriv)[i]].rule_ << endl; +// } +} + +void IncrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, UnigramModel* plm, MT19937* rng) { + for (unsigned i = 0; i < d.size(); ++i) + plm->Increment(*hg.edges_[d[i]].rule_, rng); +} + +void DecrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, UnigramModel* plm, MT19937* rng) { + for (unsigned i = 0; i < d.size(); ++i) + plm->Decrement(*hg.edges_[d[i]].rule_, rng); +} + +prob_t TotalProb(const Hypergraph& hg) { + return Inside<prob_t, EdgeProb>(hg); +} + +void IncrementLatticePath(const Hypergraph& hg, const vector<unsigned>& d, Lattice* pl) { + Lattice& lat = *pl; + for (int i = 0; i < d.size(); ++i) { + const Hypergraph::Edge& edge = hg.edges_[d[i]]; + if (edge.rule_->Arity() != 0) continue; + WordID sym = edge.rule_->e_[0]; + vector<LatticeArc>& las = lat[edge.i_]; + int dist = edge.j_ - edge.i_; + assert(dist > 0); + for (int j = 0; j < las.size(); ++j) { + if (las[j].dist2next == dist && + las[j].label == sym) { + las[j].cost += 1; + } + } + } +} + +int main(int argc, char** argv) { + po::variables_map conf; + + InitCommandLine(argc, argv, &conf); + vector<GrammarPtr> grammars(2); + grammars[0].reset(new GlueGrammar("S","X")); + const unsigned samples = conf["samples"].as<unsigned>(); + + if (conf.count("random_seed")) + prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); + else + prng.reset(new MT19937); + MT19937& rng = *prng; + vector<Lattice> corpuse; + set<WordID> vocabe; + cerr << "Reading corpus...\n"; + const unsigned toks = ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe); + cerr << "E-corpus size: " << corpuse.size() << " lattices\t (" << vocabe.size() << " word types)\n"; + UnigramModel lm(vocabe.size()); + vector<Hypergraph> hgs(corpuse.size()); + vector<vector<unsigned> > derivs(corpuse.size()); + for (int i = 0; i < corpuse.size(); ++i) { + grammars[1].reset(new PassThroughGrammar(corpuse[i], "X")); + ExhaustiveBottomUpParser parser("S", grammars); + bool res = parser.Parse(corpuse[i], &hgs[i]); // exhaustive parse + assert(res); + } + + double csamples = 0; + for (int SS=0; SS < samples; ++SS) { + const bool is_last = ((samples - 1) == SS); + prob_t dlh = prob_t::One(); + bool record_sample = (SS > (samples * 1 / 3) && (SS % 5 == 3)); + if (record_sample) csamples++; + for (int ci = 0; ci < corpuse.size(); ++ci) { + Lattice& lat = corpuse[ci]; + Hypergraph& hg = hgs[ci]; + vector<unsigned>& d = derivs[ci]; + if (!is_last) DecrementDerivation(hg, d, &lm, &rng); + for (unsigned i = 0; i < hg.edges_.size(); ++i) { + TRule& r = *hg.edges_[i].rule_; + if (r.Arity() != 0) + hg.edges_[i].edge_prob_ = prob_t::One(); + else + hg.edges_[i].edge_prob_ = lm.Prob(r); + } + if (!is_last) { + d.clear(); + SampleDerivation(hg, &rng, &d); + IncrementDerivation(hg, derivs[ci], &lm, &rng); + } else { + prob_t p = TotalProb(hg); + dlh *= p; + cerr << " p(sentence) = " << log(p) << "\t" << log(dlh) << endl; + } + if (record_sample) IncrementLatticePath(hg, derivs[ci], &lat); + } + double llh = log(lm.Likelihood()); + cerr << "LLH=" << llh << "\tENTROPY=" << (-llh / log(2) / toks) << "\tPPL=" << pow(2, -llh / log(2) / toks) << endl; + if (SS % 10 == 9) lm.ResampleHyperparameters(&rng); + if (is_last) { + double z = log(dlh); + cerr << "TOTAL_PROB=" << z << "\tENTROPY=" << (-z / log(2) / toks) << "\tPPL=" << pow(2, -z / log(2) / toks) << endl; + } + } + cerr << lm.crp << endl; + cerr << lm.glue << endl; + for (int i = 0; i < corpuse.size(); ++i) { + for (int j = 0; j < corpuse[i].size(); ++j) + for (int k = 0; k < corpuse[i][j].size(); ++k) { + corpuse[i][j][k].cost /= csamples; + corpuse[i][j][k].cost += 1e-3; + corpuse[i][j][k].cost = log(corpuse[i][j][k].cost); + } + cout << HypergraphIO::AsPLF(corpuse[i]) << endl; + } + return 0; +} + |