diff options
author | Patrick Simianer <p@simianer.de> | 2011-10-19 14:02:34 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-10-19 14:02:34 +0200 |
commit | 9beaeb42b71fa504bfa41a402cb17eb6ac4001af (patch) | |
tree | 0add4afabc526391753e4e6b9443a7bf21e3e2c3 /gi/markov_al | |
parent | ce3b4db94d40c111ede321ac6de2bb061a81c4af (diff) | |
parent | 09297047e446f49804d3f48bf320cdbd38d6396a (diff) |
merge upstream/master
Diffstat (limited to 'gi/markov_al')
-rw-r--r-- | gi/markov_al/Makefile.am | 6 | ||||
-rw-r--r-- | gi/markov_al/README | 2 | ||||
-rw-r--r-- | gi/markov_al/ml.cc | 470 |
3 files changed, 478 insertions, 0 deletions
diff --git a/gi/markov_al/Makefile.am b/gi/markov_al/Makefile.am new file mode 100644 index 00000000..fe3e3349 --- /dev/null +++ b/gi/markov_al/Makefile.am @@ -0,0 +1,6 @@ +bin_PROGRAMS = ml + +ml_SOURCES = ml.cc + +AM_CPPFLAGS = -W -Wall -Wno-sign-compare -funroll-loops -I$(top_srcdir)/utils $(GTEST_CPPFLAGS) -I$(top_srcdir)/decoder +AM_LDFLAGS = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz diff --git a/gi/markov_al/README b/gi/markov_al/README new file mode 100644 index 00000000..9c10f7cd --- /dev/null +++ b/gi/markov_al/README @@ -0,0 +1,2 @@ +Experimental translation models with Markovian dependencies. + diff --git a/gi/markov_al/ml.cc b/gi/markov_al/ml.cc new file mode 100644 index 00000000..1e71edd6 --- /dev/null +++ b/gi/markov_al/ml.cc @@ -0,0 +1,470 @@ +#include <iostream> +#include <tr1/unordered_map> + +#include <boost/shared_ptr.hpp> +#include <boost/functional.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "tdict.h" +#include "filelib.h" +#include "sampler.h" +#include "ccrp_onetable.h" +#include "array2d.h" + +using namespace std; +using namespace std::tr1; +namespace po = boost::program_options; + +void PrintTopCustomers(const CCRP_OneTable<WordID>& crp) { + for (CCRP_OneTable<WordID>::const_iterator it = crp.begin(); it != crp.end(); ++it) { + cerr << " " << TD::Convert(it->first) << " = " << it->second << endl; + } +} + +void PrintAlignment(const vector<WordID>& src, const vector<WordID>& trg, const vector<unsigned char>& a) { + cerr << TD::GetString(src) << endl << TD::GetString(trg) << endl; + Array2D<bool> al(src.size(), trg.size()); + for (int i = 0; i < a.size(); ++i) + if (a[i] != 255) al(a[i], i) = true; + cerr << al << endl; +} + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") + ("input,i",po::value<string>(),"Read parallel data from") + ("random_seed,S",po::value<uint32_t>(), "Random seed"); + po::options_description clo("Command line options"); + clo.add_options() + ("config", po::value<string>(), "Configuration file") + ("help,h", "Print this help message and exit"); + po::options_description dconfig_options, dcmdline_options; + dconfig_options.add(opts); + dcmdline_options.add(opts).add(clo); + + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (conf->count("config")) { + ifstream config((*conf)["config"].as<string>().c_str()); + po::store(po::parse_config_file(config, dconfig_options), *conf); + } + po::notify(*conf); + + if (conf->count("help") || (conf->count("input") == 0)) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +struct Unigram; +struct Bigram { + Bigram() : trg(), cond() {} + Bigram(WordID prev, WordID cur, WordID t) : trg(t) { cond.first = prev; cond.second = cur; } + const pair<WordID,WordID>& ConditioningPair() const { + return cond; + } + WordID& prev_src() { return cond.first; } + WordID& cur_src() { return cond.second; } + const WordID& prev_src() const { return cond.first; } + const WordID& cur_src() const { return cond.second; } + WordID trg; + private: + pair<WordID, WordID> cond; +}; + +struct Unigram { + Unigram() : cur_src(), trg() {} + Unigram(WordID s, WordID t) : cur_src(s), trg(t) {} + WordID cur_src; + WordID trg; +}; + +ostream& operator<<(ostream& os, const Bigram& b) { + os << "( " << TD::Convert(b.trg) << " | " << TD::Convert(b.prev_src()) << " , " << TD::Convert(b.cur_src()) << " )"; + return os; +} + +ostream& operator<<(ostream& os, const Unigram& u) { + os << "( " << TD::Convert(u.trg) << " | " << TD::Convert(u.cur_src) << " )"; + return os; +} + +bool operator==(const Bigram& a, const Bigram& b) { + return a.trg == b.trg && a.cur_src() == b.cur_src() && a.prev_src() == b.prev_src(); +} + +bool operator==(const Unigram& a, const Unigram& b) { + return a.trg == b.trg && a.cur_src == b.cur_src; +} + +size_t hash_value(const Bigram& b) { + size_t h = boost::hash_value(b.prev_src()); + boost::hash_combine(h, boost::hash_value(b.cur_src())); + boost::hash_combine(h, boost::hash_value(b.trg)); + return h; +} + +size_t hash_value(const Unigram& u) { + size_t h = boost::hash_value(u.cur_src); + boost::hash_combine(h, boost::hash_value(u.trg)); + return h; +} + +void ReadParallelCorpus(const string& filename, + vector<vector<WordID> >* f, + vector<vector<WordID> >* e, + set<WordID>* vocab_f, + set<WordID>* vocab_e) { + f->clear(); + e->clear(); + vocab_f->clear(); + vocab_e->clear(); + istream* in; + if (filename == "-") + in = &cin; + else + in = new ifstream(filename.c_str()); + assert(*in); + string line; + const WordID kDIV = TD::Convert("|||"); + vector<WordID> tmp; + while(*in) { + getline(*in, line); + if (line.empty() && !*in) break; + e->push_back(vector<int>()); + f->push_back(vector<int>()); + vector<int>& le = e->back(); + vector<int>& lf = f->back(); + tmp.clear(); + TD::ConvertSentence(line, &tmp); + bool isf = true; + for (unsigned i = 0; i < tmp.size(); ++i) { + const int cur = tmp[i]; + if (isf) { + if (kDIV == cur) { isf = false; } else { + lf.push_back(cur); + vocab_f->insert(cur); + } + } else { + assert(cur != kDIV); + le.push_back(cur); + vocab_e->insert(cur); + } + } + assert(isf == false); + } + if (in != &cin) delete in; +} + +struct UnigramModel { + UnigramModel(size_t src_voc_size, size_t trg_voc_size) : + unigrams(TD::NumWords() + 1, CCRP_OneTable<WordID>(1,1,1,1)), + p0(1.0 / trg_voc_size) {} + + void increment(const Bigram& b) { + unigrams[b.cur_src()].increment(b.trg); + } + + void decrement(const Bigram& b) { + unigrams[b.cur_src()].decrement(b.trg); + } + + double prob(const Bigram& b) const { + const double q0 = unigrams[b.cur_src()].prob(b.trg, p0); + return q0; + } + + double LogLikelihood() const { + double llh = 0; + for (unsigned i = 0; i < unigrams.size(); ++i) { + const CCRP_OneTable<WordID>& crp = unigrams[i]; + if (crp.num_customers() > 0) { + llh += crp.log_crp_prob(); + llh += crp.num_tables() * log(p0); + } + } + return llh; + } + + void ResampleHyperparameters(MT19937* rng) { + for (unsigned i = 0; i < unigrams.size(); ++i) + unigrams[i].resample_hyperparameters(rng); + } + + vector<CCRP_OneTable<WordID> > unigrams; // unigrams[src].prob(trg, p0) = p(trg|src) + + const double p0; +}; + +struct BigramModel { + BigramModel(size_t src_voc_size, size_t trg_voc_size) : + unigrams(TD::NumWords() + 1, CCRP_OneTable<WordID>(1,1,1,1)), + p0(1.0 / trg_voc_size) {} + + void increment(const Bigram& b) { + BigramMap::iterator it = bigrams.find(b.ConditioningPair()); + if (it == bigrams.end()) { + it = bigrams.insert(make_pair(b.ConditioningPair(), CCRP_OneTable<WordID>(1,1,1,1))).first; + } + if (it->second.increment(b.trg)) + unigrams[b.cur_src()].increment(b.trg); + } + + void decrement(const Bigram& b) { + BigramMap::iterator it = bigrams.find(b.ConditioningPair()); + assert(it != bigrams.end()); + if (it->second.decrement(b.trg)) { + unigrams[b.cur_src()].decrement(b.trg); + if (it->second.num_customers() == 0) + bigrams.erase(it); + } + } + + double prob(const Bigram& b) const { + const double q0 = unigrams[b.cur_src()].prob(b.trg, p0); + const BigramMap::const_iterator it = bigrams.find(b.ConditioningPair()); + if (it == bigrams.end()) return q0; + return it->second.prob(b.trg, q0); + } + + double LogLikelihood() const { + double llh = 0; + for (unsigned i = 0; i < unigrams.size(); ++i) { + const CCRP_OneTable<WordID>& crp = unigrams[i]; + if (crp.num_customers() > 0) { + llh += crp.log_crp_prob(); + llh += crp.num_tables() * log(p0); + } + } + for (BigramMap::const_iterator it = bigrams.begin(); it != bigrams.end(); ++it) { + const CCRP_OneTable<WordID>& crp = it->second; + const WordID cur_src = it->first.second; + llh += crp.log_crp_prob(); + for (CCRP_OneTable<WordID>::const_iterator bit = crp.begin(); bit != crp.end(); ++bit) { + llh += log(unigrams[cur_src].prob(bit->second, p0)); + } + } + return llh; + } + + void ResampleHyperparameters(MT19937* rng) { + for (unsigned i = 0; i < unigrams.size(); ++i) + unigrams[i].resample_hyperparameters(rng); + for (BigramMap::iterator it = bigrams.begin(); it != bigrams.end(); ++it) + it->second.resample_hyperparameters(rng); + } + + typedef unordered_map<pair<WordID,WordID>, CCRP_OneTable<WordID>, boost::hash<pair<WordID,WordID> > > BigramMap; + BigramMap bigrams; // bigrams[(src-1,src)].prob(trg, q0) = p(trg|src,src-1) + vector<CCRP_OneTable<WordID> > unigrams; // unigrams[src].prob(trg, p0) = p(trg|src) + + const double p0; +}; + +struct BigramAlignmentModel { + BigramAlignmentModel(size_t src_voc_size, size_t trg_voc_size) : bigrams(TD::NumWords() + 1, CCRP_OneTable<WordID>(1,1,1,1)), p0(1.0 / src_voc_size) {} + void increment(WordID prev, WordID next) { + bigrams[prev].increment(next); // hierarchy? + } + void decrement(WordID prev, WordID next) { + bigrams[prev].decrement(next); // hierarchy? + } + double prob(WordID prev, WordID next) { + return bigrams[prev].prob(next, p0); + } + double LogLikelihood() const { + double llh = 0; + for (unsigned i = 0; i < bigrams.size(); ++i) { + const CCRP_OneTable<WordID>& crp = bigrams[i]; + if (crp.num_customers() > 0) { + llh += crp.log_crp_prob(); + llh += crp.num_tables() * log(p0); + } + } + return llh; + } + + vector<CCRP_OneTable<WordID> > bigrams; // bigrams[prev].prob(next, p0) = p(next|prev) + const double p0; +}; + +struct Alignment { + vector<unsigned char> a; +}; + +int main(int argc, char** argv) { + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + const unsigned samples = conf["samples"].as<unsigned>(); + + boost::shared_ptr<MT19937> prng; + if (conf.count("random_seed")) + prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); + else + prng.reset(new MT19937); + MT19937& rng = *prng; + + vector<vector<WordID> > corpuse, corpusf; + set<WordID> vocabe, vocabf; + cerr << "Reading corpus...\n"; + ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe); + cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n"; + cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n"; + assert(corpusf.size() == corpuse.size()); + const size_t corpus_len = corpusf.size(); + const WordID kNULL = TD::Convert("<eps>"); + const WordID kBOS = TD::Convert("<s>"); + const WordID kEOS = TD::Convert("</s>"); + Bigram TT(kBOS, TD::Convert("我"), TD::Convert("i")); + Bigram TT2(kBOS, TD::Convert("要"), TD::Convert("i")); + + UnigramModel model(vocabf.size(), vocabe.size()); + vector<Alignment> alignments(corpus_len); + for (unsigned ci = 0; ci < corpus_len; ++ci) { + const vector<WordID>& src = corpusf[ci]; + const vector<WordID>& trg = corpuse[ci]; + vector<unsigned char>& alg = alignments[ci].a; + alg.resize(trg.size()); + int lenp1 = src.size() + 1; + WordID prev_src = kBOS; + for (int j = 0; j < trg.size(); ++j) { + int samp = lenp1 * rng.next(); + --samp; + if (samp < 0) samp = 255; + alg[j] = samp; + WordID cur_src = (samp == 255 ? kNULL : src[alg[j]]); + Bigram b(prev_src, cur_src, trg[j]); + model.increment(b); + prev_src = cur_src; + } + Bigram b(prev_src, kEOS, kEOS); + model.increment(b); + } + cerr << "Initial LLH: " << model.LogLikelihood() << endl; + + SampleSet<double> ss; + for (unsigned si = 0; si < 50; ++si) { + for (unsigned ci = 0; ci < corpus_len; ++ci) { + const vector<WordID>& src = corpusf[ci]; + const vector<WordID>& trg = corpuse[ci]; + vector<unsigned char>& alg = alignments[ci].a; + WordID prev_src = kBOS; + for (unsigned j = 0; j < trg.size(); ++j) { + unsigned char& a_j = alg[j]; + WordID cur_e_a_j = (a_j == 255 ? kNULL : src[a_j]); + Bigram b(prev_src, cur_e_a_j, trg[j]); + //cerr << "DEC: " << b << "\t" << nextb << endl; + model.decrement(b); + ss.clear(); + for (unsigned i = 0; i <= src.size(); ++i) { + const WordID cur_src = (i ? src[i-1] : kNULL); + b.cur_src() = cur_src; + ss.add(model.prob(b)); + } + int sampled_a_j = rng.SelectSample(ss); + a_j = (sampled_a_j ? sampled_a_j - 1 : 255); + cur_e_a_j = (a_j == 255 ? kNULL : src[a_j]); + b.cur_src() = cur_e_a_j; + //cerr << "INC: " << b << "\t" << nextb << endl; + model.increment(b); + prev_src = cur_e_a_j; + } + } + cerr << '.' << flush; + if (si % 10 == 9) { + cerr << "[LLH prev=" << model.LogLikelihood(); + //model.ResampleHyperparameters(&rng); + cerr << " new=" << model.LogLikelihood() << "]\n"; + //pair<WordID,WordID> xx = make_pair(kBOS, TD::Convert("我")); + //PrintTopCustomers(model.bigrams.find(xx)->second); + cerr << "p(" << TT << ") = " << model.prob(TT) << endl; + cerr << "p(" << TT2 << ") = " << model.prob(TT2) << endl; + PrintAlignment(corpusf[0], corpuse[0], alignments[0].a); + } + } + { + // MODEL 2 + BigramModel model(vocabf.size(), vocabe.size()); + BigramAlignmentModel amodel(vocabf.size(), vocabe.size()); + for (unsigned ci = 0; ci < corpus_len; ++ci) { + const vector<WordID>& src = corpusf[ci]; + const vector<WordID>& trg = corpuse[ci]; + vector<unsigned char>& alg = alignments[ci].a; + WordID prev_src = kBOS; + for (int j = 0; j < trg.size(); ++j) { + WordID cur_src = (alg[j] == 255 ? kNULL : src[alg[j]]); + Bigram b(prev_src, cur_src, trg[j]); + model.increment(b); + amodel.increment(prev_src, cur_src); + prev_src = cur_src; + } + amodel.increment(prev_src, kEOS); + Bigram b(prev_src, kEOS, kEOS); + model.increment(b); + } + cerr << "Initial LLH: " << model.LogLikelihood() << " " << amodel.LogLikelihood() << endl; + + SampleSet<double> ss; + for (unsigned si = 0; si < samples; ++si) { + for (unsigned ci = 0; ci < corpus_len; ++ci) { + const vector<WordID>& src = corpusf[ci]; + const vector<WordID>& trg = corpuse[ci]; + vector<unsigned char>& alg = alignments[ci].a; + WordID prev_src = kBOS; + for (unsigned j = 0; j < trg.size(); ++j) { + unsigned char& a_j = alg[j]; + WordID cur_e_a_j = (a_j == 255 ? kNULL : src[a_j]); + Bigram b(prev_src, cur_e_a_j, trg[j]); + WordID next_src = kEOS; + WordID next_trg = kEOS; + if (j < (trg.size() - 1)) { + next_src = (alg[j+1] == 255 ? kNULL : src[alg[j + 1]]); + next_trg = trg[j + 1]; + } + Bigram nextb(cur_e_a_j, next_src, next_trg); + //cerr << "DEC: " << b << "\t" << nextb << endl; + model.decrement(b); + model.decrement(nextb); + amodel.decrement(prev_src, cur_e_a_j); + amodel.decrement(cur_e_a_j, next_src); + ss.clear(); + for (unsigned i = 0; i <= src.size(); ++i) { + const WordID cur_src = (i ? src[i-1] : kNULL); + b.cur_src() = cur_src; + ss.add(model.prob(b) * model.prob(nextb) * amodel.prob(prev_src, cur_src) * amodel.prob(cur_src, next_src)); + //cerr << log(ss[ss.size() - 1]) << "\t" << b << endl; + } + int sampled_a_j = rng.SelectSample(ss); + a_j = (sampled_a_j ? sampled_a_j - 1 : 255); + cur_e_a_j = (a_j == 255 ? kNULL : src[a_j]); + b.cur_src() = cur_e_a_j; + nextb.prev_src() = cur_e_a_j; + //cerr << "INC: " << b << "\t" << nextb << endl; + //exit(1); + model.increment(b); + model.increment(nextb); + amodel.increment(prev_src, cur_e_a_j); + amodel.increment(cur_e_a_j, next_src); + prev_src = cur_e_a_j; + } + } + cerr << '.' << flush; + if (si % 10 == 9) { + cerr << "[LLH prev=" << (model.LogLikelihood() + amodel.LogLikelihood()); + //model.ResampleHyperparameters(&rng); + cerr << " new=" << model.LogLikelihood() << "]\n"; + pair<WordID,WordID> xx = make_pair(kBOS, TD::Convert("我")); + cerr << "p(" << TT << ") = " << model.prob(TT) << endl; + cerr << "p(" << TT2 << ") = " << model.prob(TT2) << endl; + pair<WordID,WordID> xx2 = make_pair(kBOS, TD::Convert("要")); + PrintTopCustomers(model.bigrams.find(xx)->second); + //PrintTopCustomers(amodel.bigrams[TD::Convert("<s>")]); + //PrintTopCustomers(model.unigrams[TD::Convert("<eps>")]); + PrintAlignment(corpusf[0], corpuse[0], alignments[0].a); + } + } + } + return 0; +} + |