diff options
author | redpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-07-02 19:23:08 +0000 |
---|---|---|
committer | redpony <redpony@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-07-02 19:23:08 +0000 |
commit | 7f772c1ade536ae1e51a1da3e8e78301646aaa0d (patch) | |
tree | 242d4720a701c45755d14b02117dc5ada81f700a /extools | |
parent | 11c4cc3836e9e0e38bc4250500381ce7723799ee (diff) |
filter and score in a single file
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@118 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'extools')
-rw-r--r-- | extools/Makefile.am | 15 | ||||
-rw-r--r-- | extools/filter_grammar.cc | 196 | ||||
-rw-r--r-- | extools/filter_score_grammar.cc | 450 | ||||
-rw-r--r-- | extools/score_grammar.cc | 371 |
4 files changed, 455 insertions, 577 deletions
diff --git a/extools/Makefile.am b/extools/Makefile.am index 5baefa21..bce6c404 100644 --- a/extools/Makefile.am +++ b/extools/Makefile.am @@ -2,11 +2,14 @@ bin_PROGRAMS = \ extractor \ mr_stripe_rule_reduce \ build_lexical_translation \ - score_grammar \ - filter_grammar + filter_score_grammar noinst_PROGRAMS = +filter_score_grammar_SOURCES = filter_score_grammar.cc extract.cc sentence_pair.cc +filter_score_grammar_LDADD = $(top_srcdir)/decoder/libcdec.a -lz +filter_score_grammar_LDFLAGS = -all-static + build_lexical_translation_SOURCES = build_lexical_translation.cc extract.cc sentence_pair.cc build_lexical_translation_LDADD = $(top_srcdir)/decoder/libcdec.a -lz build_lexical_translation_LDFLAGS = -all-static @@ -19,13 +22,5 @@ extractor_SOURCES = sentence_pair.cc extract.cc extractor.cc extractor_LDADD = $(top_srcdir)/decoder/libcdec.a -lz extractor_LDFLAGS = -all-static -filter_grammar_SOURCES = sentence_pair.cc extract.cc filter_grammar.cc -filter_grammar_LDADD = $(top_srcdir)/decoder/libcdec.a -lz -filter_grammar_LDFLAGS = -all-static - -score_grammar_SOURCES = sentence_pair.cc score_grammar.cc extract.cc -score_grammar_LDADD = $(top_srcdir)/decoder/libcdec.a -lz -score_grammar_LDFLAGS = -all-static - AM_CPPFLAGS = -W -Wall -Wno-sign-compare $(GTEST_CPPFLAGS) -I$(top_srcdir)/decoder diff --git a/extools/filter_grammar.cc b/extools/filter_grammar.cc deleted file mode 100644 index de052e49..00000000 --- a/extools/filter_grammar.cc +++ /dev/null @@ -1,196 +0,0 @@ -/* - * Build suffix tree representation of a data set for grammar filtering - * ./filter_grammar <test set> < unfiltered.grammar > filter.grammar - * - */ -#include <iostream> -#include <string> -#include <map> -#include <vector> -#include <utility> -#include <cstdlib> -#include <fstream> -#include <tr1/unordered_map> - -#include "filelib.h" -#include "sentence_pair.h" -#include "suffix_tree.h" -#include "extract.h" -#include "fdict.h" -#include "tdict.h" - -#include <boost/functional/hash.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - - -using namespace std; -using namespace std::tr1; - -static const size_t MAX_LINE_LENGTH = 64000000; - -typedef unordered_map<vector<WordID>, RuleStatistics, boost::hash<vector<WordID> > > ID2RuleStatistics; - - -namespace { - inline bool IsWhitespace(char c) { return c == ' ' || c == '\t'; } - inline bool IsBracket(char c){return c == '[' || c == ']';} - inline void SkipWhitespace(const char* buf, int* ptr) { - while (buf[*ptr] && IsWhitespace(buf[*ptr])) { ++(*ptr); } - } -} - - - -int ReadPhraseUntilDividerOrEnd(const char* buf, const int sstart, const int end, vector<WordID>* p) { - static const WordID kDIV = TD::Convert("|||"); - - int ptr = sstart; - while(ptr < end) { - while(ptr < end && IsWhitespace(buf[ptr])) { ++ptr; } - int start = ptr; - while(ptr < end && !IsWhitespace(buf[ptr])) { ++ptr; } - if (ptr == start) {cerr << "Warning! empty token.\n"; return ptr; } - //look in the buffer and see if its a nonterminal marker before integerizing it to wordID-anything with [...] or ||| - - const WordID w = TD::Convert(string(buf, start, ptr - start)); - - if((IsBracket(buf[start]) and IsBracket(buf[ptr-1])) or( w == kDIV)) - p->push_back(-1); - else { - if (w == kDIV) return ptr; - p->push_back(w); - } - } - return ptr; -} - - - -void ParseLine(const char* buf, vector<WordID>* cur_key, ID2RuleStatistics* counts) { - static const WordID kDIV = TD::Convert("|||"); - counts->clear(); - int ptr = 0; - while(buf[ptr] != 0 && buf[ptr] != '\t') { ++ptr; } - if (buf[ptr] != '\t') { - cerr << "Missing tab separator between key and value!\n INPUT=" << buf << endl; - exit(1); - } - cur_key->clear(); - // key is: "[X] ||| word word word" - int tmpp = ReadPhraseUntilDividerOrEnd(buf, 0, ptr, cur_key); - cur_key->push_back(kDIV); - ReadPhraseUntilDividerOrEnd(buf, tmpp, ptr, cur_key); - ++ptr; - int start = ptr; - int end = ptr; - int state = 0; // 0=reading label, 1=reading count - vector<WordID> name; - while(buf[ptr] != 0) { - while(buf[ptr] != 0 && buf[ptr] != '|') { ++ptr; } - if (buf[ptr] == '|') { - ++ptr; - if (buf[ptr] == '|') { - ++ptr; - if (buf[ptr] == '|') { - ++ptr; - end = ptr - 3; - while (end > start && IsWhitespace(buf[end-1])) { --end; } - if (start == end) { - cerr << "Got empty token!\n LINE=" << buf << endl; - exit(1); - } - switch (state) { - case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break; - case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break; - default: cerr << "Can't happen\n"; abort(); - } - SkipWhitespace(buf, &ptr); - start = ptr; - } - } - } - } - end=ptr; - while (end > start && IsWhitespace(buf[end-1])) { --end; } - if (end > start) { - switch (state) { - case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break; - case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break; - default: cerr << "Can't happen\n"; abort(); - } - } -} - - - - - - - -int main(int argc, char* argv[]){ - if (argc != 2) { - cerr << "Usage: " << argv[0] << " testset.txt < unfiltered.grammar\n"; - return 1; - } - - assert(FileExists(argv[1])); - ReadFile rfts(argv[1]); - istream& testSet = *rfts.stream(); - ofstream filter_grammar_; - bool DEBUG = false; - - AnnotatedParallelSentence sent; - char* buf = new char[MAX_LINE_LENGTH]; - cerr << "Build suffix tree from test set in " << argv[1] << endl; - //root of the suffix tree - Node<int> root; - int line=0; - - /* process the data set to build suffix tree - */ - while(!testSet.eof()) { - ++line; - testSet.getline(buf, MAX_LINE_LENGTH); - if (buf[0] == 0) continue; - - //hack to read in the test set using the alignedparallelsentence methods - strcat(buf," ||| fake ||| 0-0"); - sent.ParseInputLine(buf); - - if (DEBUG)cerr << line << "||| " << buf << " -- " << sent.f_len << endl; - - //add each successive suffix to the tree - for(int i =0;i<sent.f_len;i++) - root.InsertPath(sent.f, i, sent.f_len - 1); - if(DEBUG)cerr<<endl; - - } - - cerr << "Filtering grammar..." << endl; - //process the unfiltered, unscored grammar - - ID2RuleStatistics cur_counts; - vector<WordID> cur_key; - line = 0; - - while(cin) { - ++line; - cin.getline(buf, MAX_LINE_LENGTH); - if (buf[0] == 0) continue; - ParseLine(buf, &cur_key, &cur_counts); - const Node<int>* curnode = &root; - for(int i=0;i<cur_key.size() - 1; i++) { - if (DEBUG) cerr << line << " " << cur_key[i] << " ::: "; - if (cur_key[i] == -1) { // non-terminal - curnode = &root; - } else if (curnode) { - curnode = curnode->Extend(cur_key[i]); - if (!curnode) break; - } - } - if(curnode) cout << buf << endl; - } - - return 0; -} diff --git a/extools/filter_score_grammar.cc b/extools/filter_score_grammar.cc new file mode 100644 index 00000000..e1fd714b --- /dev/null +++ b/extools/filter_score_grammar.cc @@ -0,0 +1,450 @@ +/* + * Filter & score a grammar in striped format + */ +#include <iostream> +#include <string> +#include <map> +#include <vector> +#include <utility> +#include <cstdlib> +#include <fstream> +#include <tr1/unordered_map> + +#include "suffix_tree.h" +#include "sparse_vector.h" +#include "sentence_pair.h" +#include "extract.h" +#include "fdict.h" +#include "tdict.h" +#include "lex_trans_tbl.h" +#include "filelib.h" + +#include <boost/shared_ptr.hpp> +#include <boost/functional/hash.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +using namespace std; +using namespace std::tr1; +namespace po = boost::program_options; + +static const size_t MAX_LINE_LENGTH = 64000000; + +typedef unordered_map<vector<WordID>, RuleStatistics, boost::hash<vector<WordID> > > ID2RuleStatistics; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("test_set,t", po::value<string>(), "Filter for this test set (not specified = no filtering)") + ("top_e_given_f,n", po::value<size_t>()->default_value(30), "Keep top N rules, according to p(e|f). 0 for all") + ("aligned_corpus,c", po::value<string>(), "Aligned corpus (single line format)") + ("help,h", "Print this help message and exit"); + po::options_description clo("Command line options"); + po::options_description dcmdline_options; + dcmdline_options.add(opts); + + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + po::notify(*conf); + + if (conf->count("help") || conf->count("aligned_corpus")==0) { + cerr << "\nUsage: filter_score_grammar -t TEST-SET.fr -c ALIGNED_CORPUS.fr-en-al [-options] < grammar\n"; + cerr << dcmdline_options << endl; + exit(1); + } +} +namespace { + inline bool IsWhitespace(char c) { return c == ' ' || c == '\t'; } + inline bool IsBracket(char c){return c == '[' || c == ']';} + inline void SkipWhitespace(const char* buf, int* ptr) { + while (buf[*ptr] && IsWhitespace(buf[*ptr])) { ++(*ptr); } + } +} + +int ReadPhraseUntilDividerOrEnd(const char* buf, const int sstart, const int end, vector<WordID>* p) { + static const WordID kDIV = TD::Convert("|||"); + int ptr = sstart; + while(ptr < end) { + while(ptr < end && IsWhitespace(buf[ptr])) { ++ptr; } + int start = ptr; + while(ptr < end && !IsWhitespace(buf[ptr])) { ++ptr; } + if (ptr == start) {cerr << "Warning! empty token.\n"; return ptr; } + const WordID w = TD::Convert(string(buf, start, ptr - start)); + + if((IsBracket(buf[start]) and IsBracket(buf[ptr-1])) or( w == kDIV)) + p->push_back(1 * w); + else { + if (w == kDIV) return ptr; + p->push_back(w); + } + } + return ptr; +} + + +void ParseLine(const char* buf, vector<WordID>* cur_key, ID2RuleStatistics* counts) { + static const WordID kDIV = TD::Convert("|||"); + counts->clear(); + int ptr = 0; + while(buf[ptr] != 0 && buf[ptr] != '\t') { ++ptr; } + if (buf[ptr] != '\t') { + cerr << "Missing tab separator between key and value!\n INPUT=" << buf << endl; + exit(1); + } + cur_key->clear(); + // key is: "[X] ||| word word word" + int tmpp = ReadPhraseUntilDividerOrEnd(buf, 0, ptr, cur_key); + cur_key->push_back(kDIV); + ReadPhraseUntilDividerOrEnd(buf, tmpp, ptr, cur_key); + ++ptr; + int start = ptr; + int end = ptr; + int state = 0; // 0=reading label, 1=reading count + vector<WordID> name; + while(buf[ptr] != 0) { + while(buf[ptr] != 0 && buf[ptr] != '|') { ++ptr; } + if (buf[ptr] == '|') { + ++ptr; + if (buf[ptr] == '|') { + ++ptr; + if (buf[ptr] == '|') { + ++ptr; + end = ptr - 3; + while (end > start && IsWhitespace(buf[end-1])) { --end; } + if (start == end) { + cerr << "Got empty token!\n LINE=" << buf << endl; + exit(1); + } + switch (state) { + case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break; + case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break; + default: cerr << "Can't happen\n"; abort(); + } + SkipWhitespace(buf, &ptr); + start = ptr; + } + } + } + } + end=ptr; + while (end > start && IsWhitespace(buf[end-1])) { --end; } + if (end > start) { + switch (state) { + case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break; + case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break; + default: cerr << "Can't happen\n"; abort(); + } + } +} + + +void LexTranslationTable::createTTable(const char* buf){ + AnnotatedParallelSentence sent; + sent.ParseInputLine(buf); + + //iterate over the alignment to compute aligned words + + for(int i =0;i<sent.aligned.width();i++) + { + for (int j=0;j<sent.aligned.height();j++) + { + if (DEBUG) cerr << sent.aligned(i,j) << " "; + if( sent.aligned(i,j)) + { + if (DEBUG) cerr << TD::Convert(sent.f[i]) << " aligned to " << TD::Convert(sent.e[j]); + ++word_translation[pair<WordID,WordID> (sent.f[i], sent.e[j])]; + ++total_foreign[sent.f[i]]; + ++total_english[sent.e[j]]; + } + } + if (DEBUG) cerr << endl; + } + if (DEBUG) cerr << endl; + + const WordID NULL_ = TD::Convert("NULL"); + //handle unaligned words - align them to null + for (int j =0; j < sent.e_len; j++) { + if (sent.e_aligned[j]) continue; + ++word_translation[pair<WordID,WordID> (NULL_, sent.e[j])]; + ++total_foreign[NULL_]; + ++total_english[sent.e[j]]; + } + + for (int i =0; i < sent.f_len; i++) { + if (sent.f_aligned[i]) continue; + ++word_translation[pair<WordID,WordID> (sent.f[i], NULL_)]; + ++total_english[NULL_]; + ++total_foreign[sent.f[i]]; + } +} + + +inline float safenlog(float v) { + if (v == 1.0f) return 0.0f; + float res = -log(v); + if (res > 100.0f) res = 100.0f; + return res; +} + +struct SourceFilter { + // return true to keep the rule, otherwise false + virtual bool Matches(const vector<WordID>& key) const = 0; + virtual ~SourceFilter() {} +}; + +struct DumbSuffixTreeFilter : SourceFilter { + DumbSuffixTreeFilter(const string& corpus) : + kDIV(TD::Convert("|||")) { + cerr << "Build suffix tree from test set in " << corpus << endl; + assert(FileExists(corpus)); + ReadFile rfts(corpus); + istream& testSet = *rfts.stream(); + char* buf = new char[MAX_LINE_LENGTH]; + AnnotatedParallelSentence sent; + + /* process the data set to build suffix tree + */ + while(!testSet.eof()) { + testSet.getline(buf, MAX_LINE_LENGTH); + if (buf[0] == 0) continue; + + //hack to read in the test set using AnnotatedParallelSentence + strcat(buf," ||| fake ||| 0-0"); + sent.ParseInputLine(buf); + + //add each successive suffix to the tree + for(int i=0; i<sent.f_len; i++) + root.InsertPath(sent.f, i, sent.f_len - 1); + } + delete[] buf; + } + virtual bool Matches(const vector<WordID>& key) const { + const Node<int>* curnode = &root; + const int ks = key.size() - 1; + for(int i=0; i < ks; i++) { + const string& word = TD::Convert(key[i]); + if (key[i] == kDIV || (word[0] == '[' && word[word.size() - 1] == ']')) { // non-terminal + curnode = &root; + } else if (curnode) { + curnode = curnode->Extend(key[i]); + if (!curnode) return false; + } + } + return true; + } + const WordID kDIV; + Node<int> root; +}; + +struct FeatureExtractor { + FeatureExtractor(const std::string& name) : extractor_name(name) {} + virtual void ExtractFeatures(const vector<WordID>& lhs_src, + const vector<WordID>& trg, + const RuleStatistics& info, + SparseVector<float>* result) const = 0; + virtual ~FeatureExtractor() {} + const string extractor_name; +}; + +struct EGivenFExtractor : public FeatureExtractor { + EGivenFExtractor() : + FeatureExtractor("EGivenF"), + fid_(FD::Convert("EGivenF")), kCF(FD::Convert("CF")), kCFE(FD::Convert("CFE")) {} + virtual void ExtractFeatures(const vector<WordID>& lhs_src, + const vector<WordID>& trg, + const RuleStatistics& info, + SparseVector<float>* result) const { + (void) lhs_src; (void) trg; + assert(info.counts.value(kCF) > 0.0f); + result->set_value(fid_, safenlog(info.counts.value(kCFE) / info.counts.value(kCF))); + } + const int fid_, kCF, kCFE; +}; + +struct FGivenEExtractor : public FeatureExtractor { + FGivenEExtractor() : + FeatureExtractor("FGivenE"), + fid_(FD::Convert("FGivenE")), kCE(FD::Convert("CE")), kCFE(FD::Convert("CFE")) {} + virtual void ExtractFeatures(const vector<WordID>& lhs_src, + const vector<WordID>& trg, + const RuleStatistics& info, + SparseVector<float>* result) const { + (void) lhs_src; (void) trg; + assert(info.counts.value(kCE) > 0.0f); + result->set_value(fid_, safenlog(info.counts.value(kCFE) / info.counts.value(kCE))); + } + const int fid_, kCE, kCFE; +}; + +// this extracts the lexical translation prob features +// in BOTH directions. +struct LexProbExtractor : public FeatureExtractor { + LexProbExtractor(const std::string& corpus) : + FeatureExtractor("LexProb"), e2f_(FD::Convert("LexE2F")), f2e_(FD::Convert("LexF2E")) { + ReadFile rf(corpus); + //create lexical translation table + cerr << "Computing lexical translation probabilities from " << corpus << "..." << endl; + char* buf = new char[MAX_LINE_LENGTH]; + istream& alignment = *rf.stream(); + while(alignment) { + alignment.getline(buf, MAX_LINE_LENGTH); + if (buf[0] == 0) continue; + table.createTTable(buf); + } + delete[] buf; +#if 0 + bool PRINT_TABLE=false; + if (PRINT_TABLE) { + ofstream trans_table; + trans_table.open("lex_trans_table.out"); + for(map < pair<WordID,WordID>,int >::iterator it = table.word_translation.begin(); it != table.word_translation.end(); ++it) { + trans_table << TD::Convert(trg.first) << "|||" << TD::Convert(trg.second) << "==" << it->second << "//" << table.total_foreign[trg.first] << "//" << table.total_english[trg.second] << endl; + } + trans_table.close(); + } +#endif + } + + virtual void ExtractFeatures(const vector<WordID>& lhs_src, + const vector<WordID>& trg, + const RuleStatistics& info, + SparseVector<float>* result) const { + map <WordID, pair<int, float> > foreign_aligned; + map <WordID, pair<int, float> > english_aligned; + + //Loop over all the alignment points to compute lexical translation probability + const vector< pair<short,short> >& al = info.aligns; + vector< pair<short,short> >::const_iterator ita; + for (ita = al.begin(); ita != al.end(); ++ita) { + if (DEBUG) { + cerr << "\nA:" << ita->first << "," << ita->second << "::"; + cerr << TD::Convert(lhs_src[ita->first + 2]) << "-" << TD::Convert(trg[ita->second]); + } + + //Lookup this alignment probability in the table + int temp = table.word_translation[pair<WordID,WordID> (lhs_src[ita->first+2],trg[ita->second])]; + float f2e=0, e2f=0; + if ( table.total_foreign[lhs_src[ita->first+2]] != 0) + f2e = (float) temp / table.total_foreign[lhs_src[ita->first+2]]; + if ( table.total_english[trg[ita->second]] !=0 ) + e2f = (float) temp / table.total_english[trg[ita->second]]; + if (DEBUG) printf (" %d %E %E\n", temp, f2e, e2f); + + //local counts to keep track of which things haven't been aligned, to later compute their null alignment + if (foreign_aligned.count(lhs_src[ita->first+2])) { + foreign_aligned[ lhs_src[ita->first+2] ].first++; + foreign_aligned[ lhs_src[ita->first+2] ].second += e2f; + } else { + foreign_aligned[ lhs_src[ita->first+2] ] = pair<int,float> (1,e2f); + } + + if (english_aligned.count( trg[ ita->second] )) { + english_aligned[ trg[ ita->second] ].first++; + english_aligned[ trg[ ita->second] ].second += f2e; + } else { + english_aligned[ trg[ ita->second] ] = pair<int,float> (1,f2e); + } + } + + float final_lex_f2e=1, final_lex_e2f=1; + static const WordID NULL_ = TD::Convert("NULL"); + + //compute lexical weight P(F|E) and include unaligned foreign words + for(int i=0;i<lhs_src.size(); i++) { + if (!table.total_foreign.count(lhs_src[i])) continue; //if we dont have it in the translation table, we won't know its lexical weight + + if (foreign_aligned.count(lhs_src[i])) + { + pair<int, float> temp_lex_prob = foreign_aligned[lhs_src[i]]; + final_lex_e2f *= temp_lex_prob.second / temp_lex_prob.first; + } + else //dealing with null alignment + { + int temp_count = table.word_translation[pair<WordID,WordID> (lhs_src[i],NULL_)]; + float temp_e2f = (float) temp_count / table.total_english[NULL_]; + final_lex_e2f *= temp_e2f; + } + + } + + //compute P(E|F) unaligned english words + for(int j=0; j< trg.size(); j++) { + if (!table.total_english.count(trg[j])) continue; + + if (english_aligned.count(trg[j])) + { + pair<int, float> temp_lex_prob = english_aligned[trg[j]]; + final_lex_f2e *= temp_lex_prob.second / temp_lex_prob.first; + } + else //dealing with null + { + int temp_count = table.word_translation[pair<WordID,WordID> (NULL_,trg[j])]; + float temp_f2e = (float) temp_count / table.total_foreign[NULL_]; + final_lex_f2e *= temp_f2e; + } + } + result->set_value(e2f_, safenlog(final_lex_e2f)); + result->set_value(f2e_, safenlog(final_lex_f2e)); + } + const int e2f_, f2e_; + mutable LexTranslationTable table; +}; + +int main(int argc, char** argv){ + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + const int max_options = conf["top_e_given_f"].as<size_t>();; + ifstream alignment (conf["aligned_corpus"].as<string>().c_str()); + istream& unscored_grammar = cin; + ostream& scored_grammar = cout; + + boost::shared_ptr<SourceFilter> filter; + if (conf.count("test_set")) + filter.reset(new DumbSuffixTreeFilter(conf["test_set"].as<string>())); + + // TODO make this list configurable + vector<boost::shared_ptr<FeatureExtractor> > extractors; + extractors.push_back(boost::shared_ptr<FeatureExtractor>(new EGivenFExtractor)); + extractors.push_back(boost::shared_ptr<FeatureExtractor>(new FGivenEExtractor)); + extractors.push_back(boost::shared_ptr<FeatureExtractor>(new LexProbExtractor(conf["aligned_corpus"].as<string>()))); + + //score unscored grammar + cerr <<"Scoring grammar..." << endl; + char* buf = new char[MAX_LINE_LENGTH]; + + ID2RuleStatistics acc, cur_counts; + vector<WordID> key, cur_key,temp_key; + int line = 0; + + const int kEGivenF = FD::Convert("EGivenF"); + multimap<float, string> options; + while(!unscored_grammar.eof()) + { + ++line; + options.clear(); + unscored_grammar.getline(buf, MAX_LINE_LENGTH); + if (buf[0] == 0) continue; + ParseLine(buf, &cur_key, &cur_counts); + if (!filter || filter->Matches(cur_key)) { + //loop over all the Target side phrases that this source aligns to + for (ID2RuleStatistics::const_iterator it = cur_counts.begin(); it != cur_counts.end(); ++it) { + + SparseVector<float> feats; + for (int i = 0; i < extractors.size(); ++i) + extractors[i]->ExtractFeatures(cur_key, it->first, it->second, &feats); + + ostringstream os; + os << TD::GetString(cur_key) + << ' ' << TD::GetString(it->first) << " ||| "; + feats.Write(false, &os); + options.insert(make_pair(feats.value(kEGivenF), os.str())); + } + int ocount = 0; + for (multimap<float,string>::iterator it = options.begin(); it != options.end(); ++it) { + scored_grammar << it->second << endl; + ++ocount; + if (ocount == max_options) break; + } + } + } +} + diff --git a/extools/score_grammar.cc b/extools/score_grammar.cc deleted file mode 100644 index 7cdcdb64..00000000 --- a/extools/score_grammar.cc +++ /dev/null @@ -1,371 +0,0 @@ -/* - * Score a grammar in striped format - * ./score_grammar <alignment> < filtered.grammar > scored.grammar - */ -#include <iostream> -#include <string> -#include <map> -#include <vector> -#include <utility> -#include <cstdlib> -#include <fstream> -#include <tr1/unordered_map> - -#include "sentence_pair.h" -#include "extract.h" -#include "fdict.h" -#include "tdict.h" -#include "lex_trans_tbl.h" -#include "filelib.h" - -#include <boost/functional/hash.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - -using namespace std; -using namespace std::tr1; -namespace po = boost::program_options; - -static const size_t MAX_LINE_LENGTH = 64000000; - -typedef unordered_map<vector<WordID>, RuleStatistics, boost::hash<vector<WordID> > > ID2RuleStatistics; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("top_e_given_f,n", po::value<size_t>()->default_value(30), "Keep top N rules, according to p(e|f). 0 for all") - ("aligned_corpus,c", po::value<string>(), "Aligned corpus (single line format)") - ("help,h", "Print this help message and exit"); - po::options_description clo("Command line options"); - po::options_description dcmdline_options; - dcmdline_options.add(opts); - - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - po::notify(*conf); - - if (conf->count("help") || conf->count("aligned_corpus")==0) { - cerr << "\nUsage: score_grammar -c ALIGNED_CORPUS.fr-en-al [-options] < grammar\n"; - cerr << dcmdline_options << endl; - exit(1); - } -} -namespace { - inline bool IsWhitespace(char c) { return c == ' ' || c == '\t'; } - inline bool IsBracket(char c){return c == '[' || c == ']';} - inline void SkipWhitespace(const char* buf, int* ptr) { - while (buf[*ptr] && IsWhitespace(buf[*ptr])) { ++(*ptr); } - } -} - -int ReadPhraseUntilDividerOrEnd(const char* buf, const int sstart, const int end, vector<WordID>* p) { - static const WordID kDIV = TD::Convert("|||"); - int ptr = sstart; - while(ptr < end) { - while(ptr < end && IsWhitespace(buf[ptr])) { ++ptr; } - int start = ptr; - while(ptr < end && !IsWhitespace(buf[ptr])) { ++ptr; } - if (ptr == start) {cerr << "Warning! empty token.\n"; return ptr; } - const WordID w = TD::Convert(string(buf, start, ptr - start)); - - if((IsBracket(buf[start]) and IsBracket(buf[ptr-1])) or( w == kDIV)) - p->push_back(1 * w); - else { - if (w == kDIV) return ptr; - p->push_back(w); - } - } - return ptr; -} - - -void ParseLine(const char* buf, vector<WordID>* cur_key, ID2RuleStatistics* counts) { - static const WordID kDIV = TD::Convert("|||"); - counts->clear(); - int ptr = 0; - while(buf[ptr] != 0 && buf[ptr] != '\t') { ++ptr; } - if (buf[ptr] != '\t') { - cerr << "Missing tab separator between key and value!\n INPUT=" << buf << endl; - exit(1); - } - cur_key->clear(); - // key is: "[X] ||| word word word" - int tmpp = ReadPhraseUntilDividerOrEnd(buf, 0, ptr, cur_key); - cur_key->push_back(kDIV); - ReadPhraseUntilDividerOrEnd(buf, tmpp, ptr, cur_key); - ++ptr; - int start = ptr; - int end = ptr; - int state = 0; // 0=reading label, 1=reading count - vector<WordID> name; - while(buf[ptr] != 0) { - while(buf[ptr] != 0 && buf[ptr] != '|') { ++ptr; } - if (buf[ptr] == '|') { - ++ptr; - if (buf[ptr] == '|') { - ++ptr; - if (buf[ptr] == '|') { - ++ptr; - end = ptr - 3; - while (end > start && IsWhitespace(buf[end-1])) { --end; } - if (start == end) { - cerr << "Got empty token!\n LINE=" << buf << endl; - exit(1); - } - switch (state) { - case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break; - case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break; - default: cerr << "Can't happen\n"; abort(); - } - SkipWhitespace(buf, &ptr); - start = ptr; - } - } - } - } - end=ptr; - while (end > start && IsWhitespace(buf[end-1])) { --end; } - if (end > start) { - switch (state) { - case 0: ++state; name.clear(); ReadPhraseUntilDividerOrEnd(buf, start, end, &name); break; - case 1: --state; (*counts)[name].ParseRuleStatistics(buf, start, end); break; - default: cerr << "Can't happen\n"; abort(); - } - } -} - - - -void LexTranslationTable::createTTable(const char* buf){ - - bool DEBUG = false; - - AnnotatedParallelSentence sent; - - sent.ParseInputLine(buf); - - //iterate over the alignment to compute aligned words - - for(int i =0;i<sent.aligned.width();i++) - { - for (int j=0;j<sent.aligned.height();j++) - { - if (DEBUG) cerr << sent.aligned(i,j) << " "; - if( sent.aligned(i,j)) - { - if (DEBUG) cerr << TD::Convert(sent.f[i]) << " aligned to " << TD::Convert(sent.e[j]); - ++word_translation[pair<WordID,WordID> (sent.f[i], sent.e[j])]; - ++total_foreign[sent.f[i]]; - ++total_english[sent.e[j]]; - } - } - if (DEBUG) cerr << endl; - } - if (DEBUG) cerr << endl; - - static const WordID NULL_ = TD::Convert("NULL"); - //handle unaligned words - align them to null - for (int j =0; j < sent.e_len; j++) - { - if (sent.e_aligned[j]) continue; - ++word_translation[pair<WordID,WordID> (NULL_, sent.e[j])]; - ++total_foreign[NULL_]; - ++total_english[sent.e[j]]; - } - - for (int i =0; i < sent.f_len; i++) - { - if (sent.f_aligned[i]) continue; - ++word_translation[pair<WordID,WordID> (sent.f[i], NULL_)]; - ++total_english[NULL_]; - ++total_foreign[sent.f[i]]; - } - -} - - -inline float safenlog(float v) { - if (v == 1.0f) return 0.0f; - float res = -log(v); - if (res > 100.0f) res = 100.0f; - return res; -} - -int main(int argc, char** argv){ - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - bool DEBUG= false; - const int max_options = conf["top_e_given_f"].as<size_t>();; - ifstream alignment (conf["aligned_corpus"].as<string>().c_str()); - istream& unscored_grammar = cin; - ostream& scored_grammar = cout; - - //create lexical translation table - cerr << "Creating table..." << endl; - char* buf = new char[MAX_LINE_LENGTH]; - - LexTranslationTable table; - - while(!alignment.eof()) - { - alignment.getline(buf, MAX_LINE_LENGTH); - if (buf[0] == 0) continue; - - table.createTTable(buf); - } - - bool PRINT_TABLE=false; - if (PRINT_TABLE) - { - ofstream trans_table; - trans_table.open("lex_trans_table.out"); - for(map < pair<WordID,WordID>,int >::iterator it = table.word_translation.begin(); it != table.word_translation.end(); ++it) - { - trans_table << TD::Convert(it->first.first) << "|||" << TD::Convert(it->first.second) << "==" << it->second << "//" << table.total_foreign[it->first.first] << "//" << table.total_english[it->first.second] << endl; - } - - trans_table.close(); - } - - - //score unscored grammar - cerr <<"Scoring grammar..." << endl; - - ID2RuleStatistics acc, cur_counts; - vector<WordID> key, cur_key,temp_key; - vector< pair<short,short> > al; - vector< pair<short,short> >::iterator ita; - int line = 0; - - static const int kCF = FD::Convert("CF"); - static const int kCE = FD::Convert("CE"); - static const int kCFE = FD::Convert("CFE"); - - multimap<float, string> options; - while(!unscored_grammar.eof()) - { - ++line; - options.clear(); - unscored_grammar.getline(buf, MAX_LINE_LENGTH); - if (buf[0] == 0) continue; - ParseLine(buf, &cur_key, &cur_counts); - //loop over all the Target side phrases that this source aligns to - for (ID2RuleStatistics::const_iterator it = cur_counts.begin(); it != cur_counts.end(); ++it) - { - - /*Compute phrase translation prob. - Print out scores in this format: - Phrase trnaslation prob P(F|E) - Phrase translation prob P(E|F) - Lexical weighting prob lex(F|E) - Lexical weighting prob lex(E|F) - */ - - float pEF_ = it->second.counts.value(kCFE) / it->second.counts.value(kCF); - float pFE_ = it->second.counts.value(kCFE) / it->second.counts.value(kCE); - - map <WordID, pair<int, float> > foreign_aligned; - map <WordID, pair<int, float> > english_aligned; - - //Loop over all the alignment points to compute lexical translation probability - al = it->second.aligns; - for(ita = al.begin(); ita != al.end(); ++ita) - { - - if (DEBUG) - { - cerr << "\nA:" << ita->first << "," << ita->second << "::"; - cerr << TD::Convert(cur_key[ita->first + 2]) << "-" << TD::Convert(it->first[ita->second]); - } - - - //Lookup this alignment probability in the table - int temp = table.word_translation[pair<WordID,WordID> (cur_key[ita->first+2],it->first[ita->second])]; - float f2e=0, e2f=0; - if ( table.total_foreign[cur_key[ita->first+2]] != 0) - f2e = (float) temp / table.total_foreign[cur_key[ita->first+2]]; - if ( table.total_english[it->first[ita->second]] !=0 ) - e2f = (float) temp / table.total_english[it->first[ita->second]]; - if (DEBUG) printf (" %d %E %E\n", temp, f2e, e2f); - - - //local counts to keep track of which things haven't been aligned, to later compute their null alignment - if (foreign_aligned.count(cur_key[ita->first+2])) - { - foreign_aligned[ cur_key[ita->first+2] ].first++; - foreign_aligned[ cur_key[ita->first+2] ].second += e2f; - } - else - foreign_aligned [ cur_key[ita->first+2] ] = pair<int,float> (1,e2f); - - - - if (english_aligned.count( it->first[ ita->second] )) - { - english_aligned[ it->first[ ita->second ]].first++; - english_aligned[ it->first[ ita->second] ].second += f2e; - } - else - english_aligned [ it->first[ ita->second] ] = pair<int,float> (1,f2e); - - - - - } - - float final_lex_f2e=1, final_lex_e2f=1; - static const WordID NULL_ = TD::Convert("NULL"); - - //compute lexical weight P(F|E) and include unaligned foreign words - for(int i=0;i<cur_key.size(); i++) - { - - if (!table.total_foreign.count(cur_key[i])) continue; //if we dont have it in the translation table, we won't know its lexical weight - - if (foreign_aligned.count(cur_key[i])) - { - pair<int, float> temp_lex_prob = foreign_aligned[cur_key[i]]; - final_lex_e2f *= temp_lex_prob.second / temp_lex_prob.first; - } - else //dealing with null alignment - { - int temp_count = table.word_translation[pair<WordID,WordID> (cur_key[i],NULL_)]; - float temp_e2f = (float) temp_count / table.total_english[NULL_]; - final_lex_e2f *= temp_e2f; - } - - } - - //compute P(E|F) unaligned english words - for(int j=0; j< it->first.size(); j++) - { - if (!table.total_english.count(it->first[j])) continue; - - if (english_aligned.count(it->first[j])) - { - pair<int, float> temp_lex_prob = english_aligned[it->first[j]]; - final_lex_f2e *= temp_lex_prob.second / temp_lex_prob.first; - } - else //dealing with null - { - int temp_count = table.word_translation[pair<WordID,WordID> (NULL_,it->first[j])]; - float temp_f2e = (float) temp_count / table.total_foreign[NULL_]; - final_lex_f2e *= temp_f2e; - } - } - - ostringstream os; - os << TD::GetString(cur_key) - << ' ' << TD::GetString(it->first) << " |||" - << " FGivenE=" << safenlog(pFE_) << " EGivenF=" << safenlog(pEF_) - << " LexE2F=" << safenlog(final_lex_e2f) << " LexF2E=" << safenlog(final_lex_f2e) << endl; - options.insert(pair<float,string>(-pEF_, os.str())); - } - int ocount = 0; - for (multimap<float,string>::iterator it = options.begin(); it != options.end(); ++it) { - scored_grammar << it->second; - ++ocount; - if (ocount == max_options) break; - } - } -} - |