diff options
author | Patrick Simianer <p@simianer.de> | 2011-09-24 04:45:22 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-09-24 04:45:22 +0200 |
commit | c021d22e98844f1408b8ffb30f3c8e9a3c671899 (patch) | |
tree | ba7409d85a20fb025ab46aa84fdadb2ee4480a22 /dtrain | |
parent | 0a47dda0e980d1fb6222a1f548649914427555b2 (diff) |
get rid of boost str split, more tweaks
Diffstat (limited to 'dtrain')
-rw-r--r-- | dtrain/Makefile.am | 5 | ||||
-rw-r--r-- | dtrain/README | 1 | ||||
-rw-r--r-- | dtrain/dtrain.cc | 429 | ||||
-rw-r--r-- | dtrain/dtrain.h | 69 | ||||
-rw-r--r-- | dtrain/pairsampling.h | 17 |
5 files changed, 237 insertions, 284 deletions
diff --git a/dtrain/Makefile.am b/dtrain/Makefile.am index 12084a70..baf6883a 100644 --- a/dtrain/Makefile.am +++ b/dtrain/Makefile.am @@ -1,8 +1,7 @@ -# TODO I'm sure I can leave something out. bin_PROGRAMS = dtrain dtrain_SOURCES = dtrain.cc score.cc hgsampler.cc -dtrain_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz -lboost_filesystem -lboost_iostreams +dtrain_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz -AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval +AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval -O3 diff --git a/dtrain/README b/dtrain/README index 0cc52acc..137c1b48 100644 --- a/dtrain/README +++ b/dtrain/README @@ -31,6 +31,7 @@ TODO use separate TEST SET KNOWN BUGS PROBLEMS + doesn't select best iteration for weigts if size of candidate < N => 0 score cdec kbest vs 1best (no -k param), rescoring? => ok(?) no sparse vector in decoder => ok diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc index 01119997..76fdb49c 100644 --- a/dtrain/dtrain.cc +++ b/dtrain/dtrain.cc @@ -1,199 +1,161 @@ #include "dtrain.h" - -/* - * register_and_convert - * - */ -void -register_and_convert(const vector<string>& strs, vector<WordID>& ids) -{ - vector<string>::const_iterator it; - for ( it = strs.begin(); it < strs.end(); it++ ) { - ids.push_back( TD::Convert( *it ) ); - } -} - - -/* - * init - * - */ bool -init(int argc, char** argv, po::variables_map* cfg) +dtrain_init(int argc, char** argv, po::variables_map* cfg) { - po::options_description conff( "Configuration File Options" ); - size_t k, N, T, stop; - string s, f; + po::options_description conff("Configuration File Options"); conff.add_options() - ( "decoder_config", po::value<string>(), "configuration file for cdec" ) - ( "kbest", po::value<size_t>(&k)->default_value(DTRAIN_DEFAULT_K), "k for kbest" ) - ( "ngrams", po::value<size_t>(&N)->default_value(DTRAIN_DEFAULT_N), "N for Ngrams" ) - ( "filter", po::value<string>(&f)->default_value("unique"), "filter kbest list" ) - ( "epochs", po::value<size_t>(&T)->default_value(DTRAIN_DEFAULT_T), "# of iterations T" ) - ( "input", po::value<string>(), "input file" ) - ( "scorer", po::value<string>(&s)->default_value(DTRAIN_DEFAULT_SCORER), "scoring metric" ) - ( "output", po::value<string>(), "output weights file" ) - ( "stop_after", po::value<size_t>(&stop)->default_value(0), "stop after X input sentences" ) - ( "weights_file", po::value<string>(), "input weights file (e.g. from previous iteration)" ) - ( "wprint", po::value<string>(), "weights to print on each iteration" ) - ( "noup", po::value<bool>()->zero_tokens(), "do not update weights" ); + ("decoder_config", po::value<string>(), "configuration file for cdec") + ("kbest", po::value<size_t>()->default_value(100), "k for kbest") + ("ngrams", po::value<size_t>()->default_value(3), "N for Ngrams") + ("filter", po::value<string>()->default_value("unique"), "filter kbest list") + ("epochs", po::value<size_t>()->default_value(2), "# of iterations T") + ("input", po::value<string>()->default_value("-"), "input file") + ("output", po::value<string>()->default_value("-"), "output weights file") + ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring metric") + ("stop_after", po::value<size_t>()->default_value(0), "stop after X input sentences") + ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)") + ("wprint", po::value<string>(), "weights to print on each iteration") + ("hstreaming", po::value<bool>()->zero_tokens(), "run in hadoop streaming mode") + ("noup", po::value<bool>()->zero_tokens(), "do not update weights"); po::options_description clo("Command Line Options"); clo.add_options() - ( "config,c", po::value<string>(), "dtrain config file" ) - ( "quiet,q", po::value<bool>()->zero_tokens(), "be quiet" ) - ( "verbose,v", po::value<bool>()->zero_tokens(), "be verbose" ); + ("config,c", po::value<string>(), "dtrain config file") + ("quiet,q", po::value<bool>()->zero_tokens(), "be quiet") + ("verbose,v", po::value<bool>()->zero_tokens(), "be verbose"); po::options_description config_options, cmdline_options; config_options.add(conff); cmdline_options.add(clo); cmdline_options.add(conff); - po::store( parse_command_line(argc, argv, cmdline_options), *cfg ); - if ( cfg->count("config") ) { - ifstream config( (*cfg)["config"].as<string>().c_str() ); - po::store( po::parse_config_file(config, config_options), *cfg ); + po::store(parse_command_line(argc, argv, cmdline_options), *cfg); + if (cfg->count("config")) { + ifstream config((*cfg)["config"].as<string>().c_str()); + po::store(po::parse_config_file(config, config_options), *cfg); } po::notify(*cfg); - if ( !cfg->count("decoder_config") || !cfg->count("input") ) { + if (!cfg->count("decoder_config")) { cerr << cmdline_options << endl; return false; } - if ( cfg->count("noup") && cfg->count("decode") ) { - cerr << "You can't use 'noup' and 'decode' at once." << endl; + if (cfg->count("hstreaming") && (*cfg)["output"].as<string>() != "-") { + cerr << "When using 'hstreaming' the 'output' param should be '-'."; return false; } - if ( cfg->count("filter") && (*cfg)["filter"].as<string>() != "unique" - && (*cfg)["filter"].as<string>() != "no" ) { + if (cfg->count("filter") && (*cfg)["filter"].as<string>() != "unique" + && (*cfg)["filter"].as<string>() != "no") { cerr << "Wrong 'filter' type: '" << (*cfg)["filter"].as<string>() << "'." << endl; } - #ifdef DTRAIN_DEBUG - if ( !cfg->count("test") ) { - cerr << cmdline_options << endl; - return false; - } - #endif return true; } +#include "filelib.h" -// output formatting -ostream& _nopos( ostream& out ) { return out << resetiosflags( ios::showpos ); } -ostream& _pos( ostream& out ) { return out << setiosflags( ios::showpos ); } -ostream& _prec2( ostream& out ) { return out << setprecision(2); } -ostream& _prec5( ostream& out ) { return out << setprecision(5); } - - - - -/* - * dtrain - * - */ int -main( int argc, char** argv ) +main(int argc, char** argv) { - cout << setprecision( 5 ); + cout << _p5; // handle most parameters po::variables_map cfg; - if ( ! init(argc, argv, &cfg) ) exit(1); // something is wrong -#ifdef DTRAIN_DEBUG - if ( cfg.count("test") ) run_tests(); // run tests and exit -#endif + if (! dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong bool quiet = false; - if ( cfg.count("quiet") ) quiet = true; + if (cfg.count("quiet")) quiet = true; bool verbose = false; - if ( cfg.count("verbose") ) verbose = true; + if (cfg.count("verbose")) verbose = true; bool noup = false; - if ( cfg.count("noup") ) noup = true; + if (cfg.count("noup")) noup = true; + bool hstreaming = false; + if (cfg.count("hstreaming")) { + hstreaming = true; + quiet = true; + } const size_t k = cfg["kbest"].as<size_t>(); const size_t N = cfg["ngrams"].as<size_t>(); const size_t T = cfg["epochs"].as<size_t>(); const size_t stop_after = cfg["stop_after"].as<size_t>(); const string filter_type = cfg["filter"].as<string>(); - if ( !quiet ) { + if (!quiet) { cout << endl << "dtrain" << endl << "Parameters:" << endl; cout << setw(25) << "k " << k << endl; cout << setw(25) << "N " << N << endl; cout << setw(25) << "T " << T << endl; - if ( cfg.count("stop-after") ) + if (cfg.count("stop-after")) cout << setw(25) << "stop_after " << stop_after << endl; - if ( cfg.count("weights") ) + if (cfg.count("input_weights")) cout << setw(25) << "weights " << cfg["weights"].as<string>() << endl; cout << setw(25) << "input " << "'" << cfg["input"].as<string>() << "'" << endl; cout << setw(25) << "filter " << "'" << filter_type << "'" << endl; } vector<string> wprint; - if ( cfg.count("wprint") ) { - boost::split( wprint, cfg["wprint"].as<string>(), boost::is_any_of(" ") ); + if (cfg.count("wprint")) { + boost::split(wprint, cfg["wprint"].as<string>(), boost::is_any_of(" ")); } // setup decoder, observer register_feature_functions(); SetSilent(true); - ReadFile ini_rf( cfg["decoder_config"].as<string>() ); - if ( !quiet ) + ReadFile ini_rf(cfg["decoder_config"].as<string>()); + if (!quiet) cout << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl; - Decoder decoder( ini_rf.stream() ); - KBestGetter observer( k, filter_type ); + Decoder decoder(ini_rf.stream()); + KBestGetter observer(k, filter_type); MT19937 rng; - //KSampler observer( k, &rng ); + //KSampler observer(k, &rng); // scoring metric/scorer string scorer_str = cfg["scorer"].as<string>(); - double (*scorer)( NgramCounts&, const size_t, const size_t, size_t, vector<float> ); - if ( scorer_str == "bleu" ) { + double (*scorer)(NgramCounts&, const size_t, const size_t, size_t, vector<float>); + if (scorer_str == "bleu") { scorer = &bleu; - } else if ( scorer_str == "stupid_bleu" ) { + } else if (scorer_str == "stupid_bleu") { scorer = &stupid_bleu; - } else if ( scorer_str == "smooth_bleu" ) { + } else if (scorer_str == "smooth_bleu") { scorer = &smooth_bleu; - } else if ( scorer_str == "approx_bleu" ) { + } else if (scorer_str == "approx_bleu") { scorer = &approx_bleu; } else { cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl; exit(1); } // for approx_bleu - NgramCounts global_counts( N ); // counts for 1 best translations + NgramCounts global_counts(N); // counts for 1 best translations size_t global_hyp_len = 0; // sum hypothesis lengths size_t global_ref_len = 0; // sum reference lengths // this is all BLEU implmentations vector<float> bleu_weights; // we leave this empty -> 1/N; TODO? - if ( !quiet ) cout << setw(26) << "scorer '" << scorer_str << "'" << endl << endl; + if (!quiet) cout << setw(26) << "scorer '" << scorer_str << "'" << endl << endl; // init weights Weights weights; - if ( cfg.count("weights") ) weights.InitFromFile( cfg["weights"].as<string>() ); + if (cfg.count("weights")) weights.InitFromFile(cfg["weights"].as<string>()); SparseVector<double> lambdas; - weights.InitSparseVector( &lambdas ); + weights.InitSparseVector(&lambdas); vector<double> dense_weights; // input - if ( !quiet && !verbose ) + if (!quiet && !verbose) cout << "(a dot represents " << DTRAIN_DOTS << " lines of input)" << endl; string input_fn = cfg["input"].as<string>(); ifstream input; - if ( input_fn != "-" ) input.open( input_fn.c_str() ); + if (input_fn != "-") input.open(input_fn.c_str()); string in; vector<string> in_split; // input: src\tref\tpsg vector<string> ref_tok; // tokenized reference vector<WordID> ref_ids; // reference as vector of WordID - string grammar_str; // buffer input for t > 0 vector<string> src_str_buf; // source strings, TODO? memory vector<vector<WordID> > ref_ids_buf; // references as WordID vecs - filtering_ostream grammar_buf; // written to compressed file in /tmp // this is for writing the grammar buffer file - grammar_buf.push( gzip_compressor() ); - char grammar_buf_tmp_fn[] = DTRAIN_TMP_DIR"/dtrain-grammars-XXXXXX"; - mkstemp( grammar_buf_tmp_fn ); - grammar_buf.push( file_sink(grammar_buf_tmp_fn, ios::binary | ios::trunc) ); + char grammar_buf_fn[] = DTRAIN_TMP_DIR"/dtrain-grammars-XXXXXX"; + mkstemp(grammar_buf_fn); + ogzstream grammar_buf_out; + grammar_buf_out.open(grammar_buf_fn); size_t sid = 0, in_sz = 99999999; // sentence id, input size double acc_1best_score = 0., acc_1best_model = 0.; @@ -208,23 +170,21 @@ main( int argc, char** argv ) // for the perceptron/SVM; TODO as params double eta = 0.0005; double gamma = 0.;//01; // -> SVM - lambdas.add_value( FD::Convert("__bias"), 0 ); + lambdas.add_value(FD::Convert("__bias"), 0); // for random sampling - srand ( time(NULL) ); + srand (time(NULL)); - for ( size_t t = 0; t < T; t++ ) // T epochs + for (size_t t = 0; t < T; t++) // T epochs { time_t start, end; - time( &start ); + time(&start); // actually, we need only need this if t > 0 FIXME - ifstream grammar_file( grammar_buf_tmp_fn, ios_base::in | ios_base::binary ); - filtering_istream grammar_buf_in; - grammar_buf_in.push( gzip_decompressor() ); - grammar_buf_in.push( grammar_file ); + igzstream grammar_buf_in; + if (t > 0) grammar_buf_in.open(grammar_buf_fn); // reset average scores acc_1best_score = acc_1best_model = 0.; @@ -232,43 +192,43 @@ main( int argc, char** argv ) // reset sentence counter sid = 0; - if ( !quiet ) cout << "Iteration #" << t+1 << " of " << T << "." << endl; + if (!quiet) cout << "Iteration #" << t+1 << " of " << T << "." << endl; - while( true ) + while(true) { // get input from stdin or file in.clear(); next = stop = false; // next iteration, premature stop - if ( t == 0 ) { - if ( input_fn == "-" ) { - if ( !getline(cin, in) ) next = true; + if (t == 0) { + if (input_fn == "-") { + if (!getline(cin, in)) next = true; } else { - if ( !getline(input, in) ) next = true; + if (!getline(input, in)) next = true; } } else { - if ( sid == in_sz ) next = true; // stop if we reach the end of our input + if (sid == in_sz) next = true; // stop if we reach the end of our input } // stop after X sentences (but still iterate for those) - if ( stop_after > 0 && stop_after == sid && !next ) stop = true; + if (stop_after > 0 && stop_after == sid && !next) stop = true; // produce some pretty output - if ( !quiet && !verbose ) { - if ( sid == 0 ) cout << " "; - if ( (sid+1) % (DTRAIN_DOTS) == 0 ) { + if (!quiet && !verbose) { + if (sid == 0) cout << " "; + if ((sid+1) % (DTRAIN_DOTS) == 0) { cout << "."; cout.flush(); } - if ( (sid+1) % (20*DTRAIN_DOTS) == 0) { + if ((sid+1) % (20*DTRAIN_DOTS) == 0) { cout << " " << sid+1 << endl; - if ( !next && !stop ) cout << " "; + if (!next && !stop) cout << " "; } - if ( stop ) { - if ( sid % (20*DTRAIN_DOTS) != 0 ) cout << " " << sid << endl; + if (stop) { + if (sid % (20*DTRAIN_DOTS) != 0) cout << " " << sid << endl; cout << "Stopping after " << stop_after << " input sentences." << endl; } else { - if ( next ) { - if ( sid % (20*DTRAIN_DOTS) != 0 ) { + if (next) { + if (sid % (20*DTRAIN_DOTS) != 0) { cout << " " << sid << endl; } } @@ -276,68 +236,65 @@ main( int argc, char** argv ) } // next iteration - if ( next || stop ) break; + if (next || stop) break; // weights dense_weights.clear(); - weights.InitFromVector( lambdas ); - weights.InitVector( &dense_weights ); - decoder.SetWeights( dense_weights ); + weights.InitFromVector(lambdas); + weights.InitVector(&dense_weights); + decoder.SetWeights(dense_weights); - if ( t == 0 ) { + if (t == 0) { // handling input in_split.clear(); - boost::split( in_split, in, boost::is_any_of("\t") ); // in_split[0] is id + strsplit(in, in_split, '\t', 4); // getting reference ref_tok.clear(); ref_ids.clear(); - boost::split( ref_tok, in_split[2], boost::is_any_of(" ") ); - register_and_convert( ref_tok, ref_ids ); - ref_ids_buf.push_back( ref_ids ); + strsplit(in_split[2], ref_tok, ' '); + register_and_convert(ref_tok, ref_ids); + ref_ids_buf.push_back(ref_ids); // process and set grammar bool broken_grammar = true; - for ( string::iterator ti = in_split[3].begin(); ti != in_split[3].end(); ti++ ) { - if ( !isspace(*ti) ) { + for (string::iterator ti = in_split[3].begin(); ti != in_split[3].end(); ti++) { + if (!isspace(*ti)) { broken_grammar = false; break; } } - if ( broken_grammar ) continue; - grammar_str = boost::replace_all_copy( in_split[3], " __NEXT__RULE__ ", "\n" ) + "\n"; // FIXME copy, __ - grammar_buf << grammar_str << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl; - decoder.SetSentenceGrammarFromString( grammar_str ); - // decode, kbest - src_str_buf.push_back( in_split[1] ); - decoder.Decode( in_split[1], &observer ); + if (broken_grammar) continue; + boost::replace_all(in_split[3], " __NEXT__RULE__ ", "\n"); + in_split[3] += "\n"; + grammar_buf_out << in_split[3] << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl; + decoder.SetSentenceGrammarFromString(in_split[3]); + // decode + src_str_buf.push_back(in_split[1]); + decoder.Decode(in_split[1], &observer); } else { // get buffered grammar - grammar_str.clear(); - int i = 1; - while ( true ) { - string g; - getline( grammar_buf_in, g ); - //if ( g == DTRAIN_GRAMMAR_DELIM ) break; - if (boost::starts_with(g, DTRAIN_GRAMMAR_DELIM)) break; - grammar_str += g+"\n"; - i += 1; + string grammar_str; + while (true) { + string rule; + getline(grammar_buf_in, rule); + if (boost::starts_with(rule, DTRAIN_GRAMMAR_DELIM)) break; + grammar_str += rule + "\n"; } - decoder.SetSentenceGrammarFromString( grammar_str ); - // decode, kbest - decoder.Decode( src_str_buf[sid], &observer ); + decoder.SetSentenceGrammarFromString(grammar_str); + // decode + decoder.Decode(src_str_buf[sid], &observer); } // get kbest list KBestList* kb; - //if ( ) { // TODO get from forest + //if () { // TODO get from forest kb = observer.GetKBest(); //} - // scoring kbest - if ( t > 0 ) ref_ids = ref_ids_buf[sid]; - for ( size_t i = 0; i < kb->GetSize(); i++ ) { - NgramCounts counts = make_ngram_counts( ref_ids, kb->sents[i], N ); - // this is for approx bleu - if ( scorer_str == "approx_bleu" ) { - if ( i == 0 ) { // 'context of 1best translations' + // (local) scoring + if (t > 0) ref_ids = ref_ids_buf[sid]; + for (size_t i = 0; i < kb->GetSize(); i++) { + NgramCounts counts = make_ngram_counts(ref_ids, kb->sents[i], N); + if (scorer_str == "approx_bleu") { + if (i == 0) { // 'context of 1best translations' global_counts += counts; global_hyp_len += kb->sents[i].size(); global_ref_len += ref_ids.size(); @@ -347,59 +304,61 @@ main( int argc, char** argv ) cand_len = kb->sents[i].size(); } NgramCounts counts_tmp = global_counts + counts; - score = .9*scorer( counts_tmp, + score = .9*scorer(counts_tmp, global_ref_len, - global_hyp_len + cand_len, N, bleu_weights ); + global_hyp_len + cand_len, N, bleu_weights); } else { - // other scorers cand_len = kb->sents[i].size(); - score = scorer( counts, + score = scorer(counts, ref_ids.size(), - kb->sents[i].size(), N, bleu_weights ); + kb->sents[i].size(), N, bleu_weights); } - kb->scores.push_back( score ); + kb->scores.push_back(score); - if ( i == 0 ) { + if (i == 0) { acc_1best_score += score; acc_1best_model += kb->model_scores[i]; } - if ( verbose ) { - if ( i == 0 ) cout << "'" << TD::GetString( ref_ids ) << "' [ref]" << endl; - cout << _prec5 << _nopos << "[hyp " << i << "] " << "'" << TD::GetString( kb->sents[i] ) << "'"; + if (verbose) { + if (i == 0) cout << "'" << TD::GetString(ref_ids) << "' [ref]" << endl; + cout << _p5 << _np << "[hyp " << i << "] " << "'" << TD::GetString(kb->sents[i]) << "'"; cout << " [SCORE=" << score << ",model="<< kb->model_scores[i] << "]" << endl; - cout << kb->feats[i] << endl; // this is maybe too verbose + //cout << kb->feats[i] << endl; // too verbose } } // Nbest loop - if ( verbose ) cout << endl; - + if (verbose) cout << endl; +////////////////////////////////////////////////////////// // UPDATE WEIGHTS - if ( !noup ) { + if (!noup) { + + int up = 0; TrainingInstances pairs; sample_all_pairs(kb, pairs); - //sample_rand_pairs( kb, pairs, &rng ); + //sample_rand_pairs(kb, pairs, &rng); - for ( TrainingInstances::iterator ti = pairs.begin(); - ti != pairs.end(); ti++ ) { + for (TrainingInstances::iterator ti = pairs.begin(); + ti != pairs.end(); ti++) { SparseVector<double> dv; - if ( ti->first_score - ti->second_score < 0 ) { + if (ti->first_score - ti->second_score < 0) { + up++; dv = ti->second - ti->first; //} else { //dv = ti->first - ti->second; //} - dv.add_value( FD::Convert("__bias"), -1 ); + dv.add_value(FD::Convert("__bias"), -1); //SparseVector<double> reg; - //reg = lambdas * ( 2 * gamma ); + //reg = lambdas * (2 * gamma); //dv -= reg; lambdas += dv * eta; - if ( verbose ) { + if (verbose) { cout << "{{ f("<< ti->first_rank <<") > f(" << ti->second_rank << ") but g(i)="<< ti->first_score <<" < g(j)="<< ti->second_score << " so update" << endl; cout << " i " << TD::GetString(kb->sents[ti->first_rank]) << endl; cout << " " << kb->feats[ti->first_rank] << endl; @@ -411,99 +370,99 @@ main( int argc, char** argv ) } } else { //SparseVector<double> reg; - //reg = lambdas * ( 2 * gamma ); - //lambdas += reg * ( -eta ); + //reg = lambdas * (2 * gamma); + //lambdas += reg * (-eta); } } //double l2 = lambdas.l2norm(); - //if ( l2 ) lambdas /= lambdas.l2norm(); - + //if (l2) lambdas /= lambdas.l2norm(); + //cout << up << endl; } +////////////////////////////////////////////////////////// ++sid; - //cerr << "reporter:counter:dtrain,sent," << sid << endl; + + if (hstreaming) cerr << "reporter:counter:dtrain,sid," << sid << endl; } // input loop - if ( t == 0 ) in_sz = sid; // remember size (lines) of input + if (t == 0) { + in_sz = sid; // remember size (lines) of input + grammar_buf_out.close(); + if (input_fn != "-") input.close(); + } else { + grammar_buf_in.close(); + } // print some stats double avg_1best_score = acc_1best_score/(double)in_sz; double avg_1best_model = acc_1best_model/(double)in_sz; double avg_1best_score_diff, avg_1best_model_diff; - if ( t > 0 ) { + if (t > 0) { avg_1best_score_diff = avg_1best_score - scores_per_iter[t-1][0]; avg_1best_model_diff = avg_1best_model - scores_per_iter[t-1][1]; } else { avg_1best_score_diff = avg_1best_score; avg_1best_model_diff = avg_1best_model; } - if ( !quiet ) { - cout << _prec5 << _pos << "WEIGHTS" << endl; + if (!quiet) { + cout << _p5 << _p << "WEIGHTS" << endl; for (vector<string>::iterator it = wprint.begin(); it != wprint.end(); it++) { - cout << setw(16) << *it << " = " << dense_weights[FD::Convert( *it )] << endl; + cout << setw(16) << *it << " = " << dense_weights[FD::Convert(*it)] << endl; } - cout << " ---" << endl; - cout << _nopos << " avg score: " << avg_1best_score; - cout << _pos << " (" << avg_1best_score_diff << ")" << endl; - cout << _nopos << "avg model score: " << avg_1best_model; - cout << _pos << " (" << avg_1best_model_diff << ")" << endl; + cout << _np << " avg score: " << avg_1best_score; + cout << _p << " (" << avg_1best_score_diff << ")" << endl; + cout << _np << "avg model score: " << avg_1best_model; + cout << _p << " (" << avg_1best_model_diff << ")" << endl; } vector<double> remember_scores; - remember_scores.push_back( avg_1best_score ); - remember_scores.push_back( avg_1best_model ); - scores_per_iter.push_back( remember_scores ); - if ( avg_1best_score > max_score ) { + remember_scores.push_back(avg_1best_score); + remember_scores.push_back(avg_1best_model); + scores_per_iter.push_back(remember_scores); + if (avg_1best_score > max_score) { max_score = avg_1best_score; best_t = t; } - - // close open files - if ( input_fn != "-" ) input.close(); - close( grammar_buf ); - grammar_file.close(); - - time ( &end ); - double time_dif = difftime( end, start ); + time (&end); + double time_dif = difftime(end, start); overall_time += time_dif; - if ( !quiet ) { - cout << _prec2 << _nopos << "(time " << time_dif/60. << " min, "; + if (!quiet) { + cout << _p2 << _np << "(time " << time_dif/60. << " min, "; cout << time_dif/(double)in_sz<< " s/S)" << endl; } - if ( t+1 != T && !quiet ) cout << endl; + if (t+1 != T && !quiet) cout << endl; - if ( noup ) break; + if (noup) break; } // outer loop - unlink( grammar_buf_tmp_fn ); - if ( !noup ) { - // TODO BEST ITER - if ( !quiet ) cout << endl << "writing weights file '" << cfg["output"].as<string>() << "' ..."; - if ( cfg["output"].as<string>() == "-" ) { - for ( SparseVector<double>::const_iterator ti = lambdas.begin(); - ti != lambdas.end(); ++ti ) { - if ( ti->second == 0 ) continue; - //if ( ti->first == "__bias" ) continue; - cout << setprecision(9); - cout << _nopos << FD::Convert(ti->first) << "\t" << ti->second << endl; - //cout << "__SHARD_COUNT__\t1" << endl; + //unlink(grammar_buf_fn); + + if (!noup) { + if (!quiet) cout << endl << "writing weights file '" << cfg["output"].as<string>() << "' ..."; + if (cfg["output"].as<string>() == "-") { + for (SparseVector<double>::const_iterator ti = lambdas.begin(); + ti != lambdas.end(); ++ti) { + if (ti->second == 0) continue; + cout << _p9; + cout << _np << FD::Convert(ti->first) << "\t" << ti->second << endl; } + if (hstreaming) cout << "__SHARD_COUNT__\t1" << endl; } else { - weights.InitFromVector( lambdas ); - weights.WriteToFile( cfg["output"].as<string>(), true ); + weights.InitFromVector(lambdas); + weights.WriteToFile(cfg["output"].as<string>(), true); } - if ( !quiet ) cout << "done" << endl; + if (!quiet) cout << "done" << endl; } - if ( !quiet ) { - cout << _prec5 << _nopos << endl << "---" << endl << "Best iteration: "; + if (!quiet) { + cout << _p5 << _np << endl << "---" << endl << "Best iteration: "; cout << best_t+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl; - cout << _prec2 << "This took " << overall_time/60. << " min." << endl; + cout << _p2 << "This took " << overall_time/60. << " min." << endl; } return 0; diff --git a/dtrain/dtrain.h b/dtrain/dtrain.h index 3d319233..9bc5be93 100644 --- a/dtrain/dtrain.h +++ b/dtrain/dtrain.h @@ -2,59 +2,56 @@ #define _DTRAIN_COMMON_H_ -#include <sstream> -#include <iostream> -#include <vector> -#include <cassert> -#include <cmath> #include <iomanip> -// cdec includes -#include "sentence_metadata.h" +#include <boost/algorithm/string.hpp> +#include <boost/program_options.hpp> + #include "verbose.h" #include "viterbi.h" -#include "kbest.h" #include "ff_register.h" #include "decoder.h" #include "weights.h" -// boost includes -#include <boost/algorithm/string.hpp> -#include <boost/program_options.hpp> - -// own headers #include "score.h" - -#define DTRAIN_DEFAULT_K 100 // k for kbest lists -#define DTRAIN_DEFAULT_N 4 // N for ngrams (e.g. BLEU) -#define DTRAIN_DEFAULT_T 1 // iterations -#define DTRAIN_DEFAULT_SCORER "stupid_bleu" // scorer -#define DTRAIN_DOTS 100 // when to display a '.' -#define DTRAIN_TMP_DIR "/tmp" // put this on a SSD? -#define DTRAIN_GRAMMAR_DELIM "########EOS########" - - #include "kbestget.h" -#include "pairsampling.h" - #include "ksampler.h" +#include "pairsampling.h" -// boost compression -#include <boost/iostreams/device/file.hpp> -#include <boost/iostreams/filtering_stream.hpp> -#include <boost/iostreams/filter/gzip.hpp> -//#include <boost/iostreams/filter/zlib.hpp> -//#include <boost/iostreams/filter/bzip2.hpp> -using namespace boost::iostreams; - -#include <boost/algorithm/string/predicate.hpp> -#include <boost/lexical_cast.hpp> - +#define DTRAIN_DOTS 100 // when to display a '.' +#define DTRAIN_TMP_DIR "/var/hadoop/mapred/local" // put this on a SSD? +#define DTRAIN_GRAMMAR_DELIM "########EOS########" using namespace std; using namespace dtrain; namespace po = boost::program_options; +inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids) { + vector<string>::const_iterator it; + for (it = strs.begin(); it < strs.end(); it++) + ids.push_back(TD::Convert(*it)); +} +inline ostream& _np(ostream& out) { return out << resetiosflags(ios::showpos); } +inline ostream& _p(ostream& out) { return out << setiosflags(ios::showpos); } +inline ostream& _p2(ostream& out) { return out << setprecision(2); } +inline ostream& _p5(ostream& out) { return out << setprecision(5); } +inline ostream& _p9(ostream& out) { return out << setprecision(9); } +inline void strsplit(string &s, vector<string>& v, char d = '\t', size_t parts = 0) { + stringstream ss(s); + string t; + size_t c = 0; + while(true) + { + if (parts > 0 && c == parts-1) { + getline(ss, t); + v.push_back(t); + break; + } + if (!getline(ss, t, d)) break; + v.push_back(t); + c++; + } +} #endif diff --git a/dtrain/pairsampling.h b/dtrain/pairsampling.h index 9774ba4a..e06036ca 100644 --- a/dtrain/pairsampling.h +++ b/dtrain/pairsampling.h @@ -2,7 +2,7 @@ #define _DTRAIN_PAIRSAMPLING_H_ #include "kbestget.h" -#include "sampler.h" // cdec MT19937 +#include "sampler.h" // cdec, MT19937 namespace dtrain { @@ -17,7 +17,7 @@ struct TPair typedef vector<TPair> TrainingInstances; -void +inline void sample_all_pairs(KBestList* kb, TrainingInstances &training) { for (size_t i = 0; i < kb->GetSize()-1; i++) { @@ -30,14 +30,13 @@ sample_all_pairs(KBestList* kb, TrainingInstances &training) p.first_score = kb->scores[i]; p.second_score = kb->scores[j]; training.push_back(p); - } - } + } // j + } // i } -void +inline void sample_rand_pairs(KBestList* kb, TrainingInstances &training, MT19937* prng) { - srand(time(NULL)); for (size_t i = 0; i < kb->GetSize()-1; i++) { for (size_t j = i+1; j < kb->GetSize(); j++) { if (prng->next() < .5) { @@ -50,14 +49,12 @@ sample_rand_pairs(KBestList* kb, TrainingInstances &training, MT19937* prng) p.second_score = kb->scores[j]; training.push_back(p); } - } - } - cout << training.size() << " sampled" << endl; + } // j + } // i } } // namespace - #endif |