diff options
author | Chris Dyer <cdyer@allegro.clab.cs.cmu.edu> | 2012-11-18 13:35:42 -0500 |
---|---|---|
committer | Chris Dyer <cdyer@allegro.clab.cs.cmu.edu> | 2012-11-18 13:35:42 -0500 |
commit | 8aa29810bb77611cc20b7a384897ff6703783ea1 (patch) | |
tree | 8635daa8fffb3f2cd90e30b41e27f4f9e0909447 /dtrain/score.cc | |
parent | fbdacabc85bea65d735f2cb7f92b98e08ce72d04 (diff) |
major restructure of the training code
Diffstat (limited to 'dtrain/score.cc')
-rw-r--r-- | dtrain/score.cc | 254 |
1 files changed, 0 insertions, 254 deletions
diff --git a/dtrain/score.cc b/dtrain/score.cc deleted file mode 100644 index 34fc86a9..00000000 --- a/dtrain/score.cc +++ /dev/null @@ -1,254 +0,0 @@ -#include "score.h" - -namespace dtrain -{ - - -/* - * bleu - * - * as in "BLEU: a Method for Automatic Evaluation - * of Machine Translation" - * (Papineni et al. '02) - * - * NOTE: 0 if for one n \in {1..N} count is 0 - */ -score_t -BleuScorer::Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len) -{ - if (hyp_len == 0 || ref_len == 0) return 0.; - unsigned M = N_; - vector<score_t> v = w_; - if (ref_len < N_) { - M = ref_len; - for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M); - } - score_t sum = 0; - for (unsigned i = 0; i < M; i++) { - if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) return 0.; - sum += v[i] * log((score_t)counts.clipped_[i]/counts.sum_[i]); - } - return brevity_penalty(hyp_len, ref_len) * exp(sum); -} - -score_t -BleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, - const unsigned /*rank*/, const unsigned /*src_len*/) -{ - unsigned hyp_len = hyp.size(), ref_len = ref.size(); - if (hyp_len == 0 || ref_len == 0) return 0.; - NgramCounts counts = make_ngram_counts(hyp, ref, N_); - return Bleu(counts, hyp_len, ref_len); -} - -/* - * 'stupid' bleu - * - * as in "ORANGE: a Method for Evaluating - * Automatic Evaluation Metrics - * for Machine Translation" - * (Lin & Och '04) - * - * NOTE: 0 iff no 1gram match - */ -score_t -StupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, - const unsigned /*rank*/, const unsigned /*src_len*/) -{ - unsigned hyp_len = hyp.size(), ref_len = ref.size(); - if (hyp_len == 0 || ref_len == 0) return 0.; - NgramCounts counts = make_ngram_counts(hyp, ref, N_); - unsigned M = N_; - vector<score_t> v = w_; - if (ref_len < N_) { - M = ref_len; - for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M); - } - score_t sum = 0, add = 0; - for (unsigned i = 0; i < M; i++) { - if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.; - if (i == 1) add = 1; - sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add))); - } - return brevity_penalty(hyp_len, ref_len) * exp(sum); -} - -/* - * smooth bleu - * - * as in "An End-to-End Discriminative Approach - * to Machine Translation" - * (Liang et al. '06) - * - * NOTE: max is 0.9375 (with N=4) - */ -score_t -SmoothBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, - const unsigned /*rank*/, const unsigned /*src_len*/) -{ - unsigned hyp_len = hyp.size(), ref_len = ref.size(); - if (hyp_len == 0 || ref_len == 0) return 0.; - NgramCounts counts = make_ngram_counts(hyp, ref, N_); - unsigned M = N_; - if (ref_len < N_) M = ref_len; - score_t sum = 0.; - vector<score_t> i_bleu; - for (unsigned i = 0; i < M; i++) i_bleu.push_back(0.); - for (unsigned i = 0; i < M; i++) { - if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) { - break; - } else { - score_t i_ng = log((score_t)counts.clipped_[i]/counts.sum_[i]); - for (unsigned j = i; j < M; j++) { - i_bleu[j] += (1/((score_t)j+1)) * i_ng; - } - } - sum += exp(i_bleu[i])/pow(2.0, (double)(N_-i)); - } - return brevity_penalty(hyp_len, ref_len) * sum; -} - -/* - * 'sum' bleu - * - * sum up Ngram precisions - */ -score_t -SumBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, - const unsigned /*rank*/, const unsigned /*src_len*/) -{ - unsigned hyp_len = hyp.size(), ref_len = ref.size(); - if (hyp_len == 0 || ref_len == 0) return 0.; - NgramCounts counts = make_ngram_counts(hyp, ref, N_); - unsigned M = N_; - if (ref_len < N_) M = ref_len; - score_t sum = 0.; - unsigned j = 1; - for (unsigned i = 0; i < M; i++) { - if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break; - sum += ((score_t)counts.clipped_[i]/counts.sum_[i])/pow(2.0, (double) (N_-j+1)); - j++; - } - return brevity_penalty(hyp_len, ref_len) * sum; -} - -/* - * 'sum' (exp) bleu - * - * sum up exp(Ngram precisions) - */ -score_t -SumExpBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, - const unsigned /*rank*/, const unsigned /*src_len*/) -{ - unsigned hyp_len = hyp.size(), ref_len = ref.size(); - if (hyp_len == 0 || ref_len == 0) return 0.; - NgramCounts counts = make_ngram_counts(hyp, ref, N_); - unsigned M = N_; - if (ref_len < N_) M = ref_len; - score_t sum = 0.; - unsigned j = 1; - for (unsigned i = 0; i < M; i++) { - if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break; - sum += exp(((score_t)counts.clipped_[i]/counts.sum_[i]))/pow(2.0, (double) (N_-j+1)); - j++; - } - return brevity_penalty(hyp_len, ref_len) * sum; -} - -/* - * 'sum' (whatever) bleu - * - * sum up exp(weight * log(Ngram precisions)) - */ -score_t -SumWhateverBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, - const unsigned /*rank*/, const unsigned /*src_len*/) -{ - unsigned hyp_len = hyp.size(), ref_len = ref.size(); - if (hyp_len == 0 || ref_len == 0) return 0.; - NgramCounts counts = make_ngram_counts(hyp, ref, N_); - unsigned M = N_; - vector<score_t> v = w_; - if (ref_len < N_) { - M = ref_len; - for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M); - } - score_t sum = 0.; - unsigned j = 1; - for (unsigned i = 0; i < M; i++) { - if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break; - sum += exp(v[i] * log(((score_t)counts.clipped_[i]/counts.sum_[i])))/pow(2.0, (double) (N_-j+1)); - j++; - } - return brevity_penalty(hyp_len, ref_len) * sum; -} - -/* - * approx. bleu - * - * as in "Online Large-Margin Training of Syntactic - * and Structural Translation Features" - * (Chiang et al. '08) - * - * NOTE: Needs some more code in dtrain.cc . - * No scaling by src len. - */ -score_t -ApproxBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, - const unsigned rank, const unsigned src_len) -{ - unsigned hyp_len = hyp.size(), ref_len = ref.size(); - if (ref_len == 0) return 0.; - score_t score = 0.; - NgramCounts counts(N_); - if (hyp_len > 0) { - counts = make_ngram_counts(hyp, ref, N_); - NgramCounts tmp = glob_onebest_counts_ + counts; - score = Bleu(tmp, hyp_len, ref_len); - } - if (rank == 0) { // 'context of 1best translations' - glob_onebest_counts_ += counts; - glob_onebest_counts_ *= discount_; - glob_hyp_len_ = discount_ * (glob_hyp_len_ + hyp_len); - glob_ref_len_ = discount_ * (glob_ref_len_ + ref_len); - glob_src_len_ = discount_ * (glob_src_len_ + src_len); - } - return score; -} - -/* - * Linear (Corpus) Bleu - * - * as in "Lattice Minimum Bayes-Risk Decoding - * for Statistical Machine Translation" - * (Tromble et al. '08) - * - */ -score_t -LinearBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref, - const unsigned rank, const unsigned /*src_len*/) -{ - unsigned hyp_len = hyp.size(), ref_len = ref.size(); - if (ref_len == 0) return 0.; - unsigned M = N_; - if (ref_len < N_) M = ref_len; - NgramCounts counts(M); - if (hyp_len > 0) - counts = make_ngram_counts(hyp, ref, M); - score_t ret = 0.; - for (unsigned i = 0; i < M; i++) { - if (counts.sum_[i] == 0 || onebest_counts_.sum_[i] == 0) break; - ret += counts.sum_[i]/onebest_counts_.sum_[i]; - } - ret = -(hyp_len/(score_t)onebest_len_) + (1./M) * ret; - if (rank == 0) { - onebest_len_ += hyp_len; - onebest_counts_ += counts; - } - return ret; -} - - -} // namespace - |