summaryrefslogtreecommitdiff
path: root/dtrain/score.cc
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2011-09-25 22:59:24 +0200
committerPatrick Simianer <p@simianer.de>2011-09-25 22:59:24 +0200
commit044e1f2f7a074d9940c30eee7b800beb070c706d (patch)
tree3268bd7745a351d64d080f95001b4aa726d3a690 /dtrain/score.cc
parentb0a9e224cdb3065027c9dc4aa1598ab4bd3b097c (diff)
size_t -> unsigned
Diffstat (limited to 'dtrain/score.cc')
-rw-r--r--dtrain/score.cc63
1 files changed, 25 insertions, 38 deletions
diff --git a/dtrain/score.cc b/dtrain/score.cc
index c6d3a05f..52644250 100644
--- a/dtrain/score.cc
+++ b/dtrain/score.cc
@@ -5,13 +5,13 @@ namespace dtrain
Ngrams
-make_ngrams(vector<WordID>& s, size_t N)
+make_ngrams(vector<WordID>& s, unsigned N)
{
Ngrams ngrams;
vector<WordID> ng;
for (size_t i = 0; i < s.size(); i++) {
ng.clear();
- for (size_t j = i; j < min(i+N, s.size()); j++) {
+ for (unsigned j = i; j < min(i+N, s.size()); j++) {
ng.push_back(s[j]);
ngrams[ng]++;
}
@@ -20,7 +20,7 @@ make_ngrams(vector<WordID>& s, size_t N)
}
NgramCounts
-make_ngram_counts(vector<WordID> hyp, vector<WordID> ref, size_t N)
+make_ngram_counts(vector<WordID> hyp, vector<WordID> ref, unsigned N)
{
Ngrams hyp_ngrams = make_ngrams(hyp, N);
Ngrams ref_ngrams = make_ngrams(ref, N);
@@ -48,26 +48,22 @@ make_ngram_counts(vector<WordID> hyp, vector<WordID> ref, size_t N)
* NOTE: 0 if one n in {1..N} has 0 count
*/
score_t
-brevity_penaly(const size_t hyp_len, const size_t ref_len)
+brevity_penaly(const unsigned hyp_len, const unsigned ref_len)
{
if (hyp_len > ref_len) return 1;
- return exp(1 - (score_t)ref_len/(score_t)hyp_len);
+ return exp(1 - (score_t)ref_len/hyp_len);
}
score_t
-bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- size_t N, vector<score_t> weights )
+bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len,
+ unsigned N, vector<score_t> weights )
{
if (hyp_len == 0 || ref_len == 0) return 0;
if (ref_len < N) N = ref_len;
- score_t N_ = (score_t)N;
- if (weights.empty())
- {
- for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
- }
+ if (weights.empty()) for (unsigned i = 0; i < N; i++) weights.push_back(1./N);
score_t sum = 0;
- for (size_t i = 0; i < N; i++) {
+ for (unsigned i = 0; i < N; i++) {
if (counts.clipped[i] == 0 || counts.sum[i] == 0) return 0;
- sum += weights[i] * log((score_t)counts.clipped[i] / (score_t)counts.sum[i]);
+ sum += weights[i] * log((score_t)counts.clipped[i] / counts.sum[i]);
}
return brevity_penaly(hyp_len, ref_len) * exp(sum);
}
@@ -83,21 +79,16 @@ bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
* NOTE: 0 iff no 1gram match
*/
score_t
-stupid_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- size_t N, vector<score_t> weights )
+stupid_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len,
+ unsigned N, vector<score_t> weights )
{
if (hyp_len == 0 || ref_len == 0) return 0;
if (ref_len < N) N = ref_len;
- score_t N_ = (score_t)N;
- if (weights.empty())
- {
- for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
- }
- score_t sum = 0;
- score_t add = 0;
- for (size_t i = 0; i < N; i++) {
+ if (weights.empty()) for (unsigned i = 0; i < N; i++) weights.push_back(1./N);
+ score_t sum = 0, add = 0;
+ for (unsigned i = 0; i < N; i++) {
if (i == 1) add = 1;
- sum += weights[i] * log(((score_t)counts.clipped[i] + add) / ((score_t)counts.sum[i] + add));
+ sum += weights[i] * log(((score_t)counts.clipped[i] + add) / ((counts.sum[i] + add)));
}
return brevity_penaly(hyp_len, ref_len) * exp(sum);
}
@@ -112,20 +103,16 @@ stupid_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
* NOTE: max is 0.9375
*/
score_t
-smooth_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- const size_t N, vector<score_t> weights )
+smooth_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len,
+ const unsigned N, vector<score_t> weights )
{
if (hyp_len == 0 || ref_len == 0) return 0;
- score_t N_ = (score_t)N;
- if (weights.empty())
- {
- for (size_t i = 0; i < N; i++) weights.push_back(1/N_);
- }
+ if (weights.empty()) for (unsigned i = 0; i < N; i++) weights.push_back(1./N);
score_t sum = 0;
- score_t j = 1;
- for (size_t i = 0; i < N; i++) {
+ unsigned j = 1;
+ for (unsigned i = 0; i < N; i++) {
if (counts.clipped[i] == 0 || counts.sum[i] == 0) continue;
- sum += exp((weights[i] * log((score_t)counts.clipped[i]/(score_t)counts.sum[i]))) / pow(2, N_-j+1);
+ sum += exp((weights[i] * log((score_t)counts.clipped[i]/counts.sum[i]))) / pow(2, N-j+1);
j++;
}
return brevity_penaly(hyp_len, ref_len) * sum;
@@ -139,11 +126,11 @@ smooth_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
* (Chiang et al. '08)
*/
score_t
-approx_bleu(NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
- const size_t N, vector<score_t> weights)
+approx_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len,
+ const unsigned N, vector<score_t> weights)
{
return brevity_penaly(hyp_len, ref_len)
- * 0.9 * bleu(counts, hyp_len, ref_len, N, weights);
+ * 0.9 * bleu(counts, hyp_len, ref_len, N, weights);
}