diff options
author | Patrick Simianer <p@simianer.de> | 2011-08-03 01:29:52 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-09-23 19:13:57 +0200 |
commit | d0c482c1d69a5c26f7d1bc27cf5b3a252716cb2e (patch) | |
tree | 5af960943f0b4f83b10cdf149146aa78deda5c43 /dtrain/learner.h | |
parent | 06829982fb0c03a5b0bbd95ee04de5a0019c5263 (diff) |
refactoring, cleaning up
Diffstat (limited to 'dtrain/learner.h')
-rw-r--r-- | dtrain/learner.h | 133 |
1 files changed, 79 insertions, 54 deletions
diff --git a/dtrain/learner.h b/dtrain/learner.h index a953284d..038749e2 100644 --- a/dtrain/learner.h +++ b/dtrain/learner.h @@ -1,71 +1,96 @@ -/*class Learnerx +#ifndef _DTRAIN_LEARNER_H_ +#define _DTRAIN_LEARNER_H_ + +#include <string> +#include <vector> +#include <map> + +#include "sparse_vector.h" +#include "score.h" + + +namespace dtrain +{ + + +class Learner { public: - virtual void Init(const vector<SparseVector<double> >& kbest, const Scores& scores) {}; - virtual void Update(SparseVector<double>& lambdas); -};*/ + virtual void Init( const vector<SparseVector<double> >& kbest, const Scores& scores, + const bool invert_score = false ) {}; + virtual void Update( SparseVector<double>& lambdas ) {}; +}; -class SofiaLearner //: public Learnerx FIXME + +class SofiaLearner : public Learner { - // TODO bool invert_score public: - void - Init( const size_t sid, const vector<SparseVector<double> >& kbest, /*const*/ Scores& scores ) - { - assert( kbest.size() == scores.size() ); - ofstream o; - //unlink( "/tmp/sofia_ml_training_stupid" ); - o.open( "/tmp/sofia_ml_training_normalx", ios::trunc ); // TODO randomize, filename exists - int fid = 0; - map<int,int>::iterator ff; + void + Init( const size_t sid, const vector<SparseVector<double> >& kbest, /*const FIXME*/ Scores& scores, + const bool invert_score = false ) + { + assert( kbest.size() == scores.size() ); + ofstream o; + unlink( "/tmp/sofia_ml_training" ); + o.open( "/tmp/sofia_ml_training", ios::trunc ); // TODO randomize, filename exists + int fid = 0; + map<int,int>::iterator ff; - for ( size_t k = 0; k < kbest.size(); ++k ) { - map<int,double> m; - SparseVector<double>::const_iterator it = kbest[k].begin(); - o << scores[k].GetScore(); - for ( ; it != kbest[k].end(); ++it) { - ff = fmap.find( it->first ); - if ( ff == fmap.end() ) { - fmap.insert( pair<int,int>(it->first, fid) ); - fmap1.insert( pair<int,int>(fid, it->first) ); - fid++; + double score; + for ( size_t k = 0; k < kbest.size(); ++k ) { + map<int,double> m; + SparseVector<double>::const_iterator it = kbest[k].begin(); + score = scores[k].GetScore(); + if ( invert_score ) score = -score; + o << score; + for ( ; it != kbest[k].end(); ++it ) { + ff = fmap.find( it->first ); + if ( ff == fmap.end() ) { + fmap.insert( pair<int,int>(it->first, fid) ); + fmap1.insert( pair<int,int>(fid, it->first) ); + fid++; + } + m.insert( pair<int,double>(fmap[it->first], it->second) ); } - m.insert(pair<int,double>(fmap[it->first], it->second)); - } - map<int,double>::iterator ti = m.begin(); - for ( ; ti != m.end(); ++ti ) { - o << " " << ti->first << ":" << ti->second; + map<int,double>::iterator ti = m.begin(); + for ( ; ti != m.end(); ++ti ) { + o << " " << ti->first << ":" << ti->second; + } + o << endl; } - o << endl; + o.close(); } - o.close(); - } - void - Update(SparseVector<double>& lambdas) - { - string call = "./sofia-ml --training_file /tmp/sofia_ml_training_normalx --model_out /tmp/sofia_ml_model_normalx --loop_type stochastic --lambda 100 --dimensionality "; - std::stringstream out; - out << fmap.size(); - call += out.str(); - call += " &>/dev/null"; - system ( call.c_str() ); - ifstream i; - //unlink( "/tmp/sofia_ml_model_stupid" ); - i.open( "/tmp/sofia_ml_model_normalx", ios::in ); - string model; - getline( i, model ); - vector<string> strs; - boost::split( strs, model, boost::is_any_of(" ") ); - int j = 0; - for ( vector<string>::iterator it = strs.begin(); it != strs.end(); ++it ) { - lambdas.set_value(fmap1[j], atof( it->c_str() ) ); - j++; + void + Update(SparseVector<double>& lambdas) + { + string call = "./sofia-ml --training_file /tmp/sofia_ml_training --model_out /tmp/sofia_ml_model --loop_type stochastic --lambda 100 --dimensionality "; + std::stringstream out; + out << fmap.size(); + call += out.str(); + call += " &>/dev/null"; + system ( call.c_str() ); + ifstream i; + unlink( "/tmp/sofia_ml_model" ); + i.open( "/tmp/sofia_ml_model", ios::in ); + string model; + getline( i, model ); + vector<string> strs; + boost::split( strs, model, boost::is_any_of(" ") ); + int j = 0; + for ( vector<string>::iterator it = strs.begin(); it != strs.end(); ++it ) { + lambdas.set_value(fmap1[j], atof( it->c_str() ) ); + j++; + } } - } private: map<int,int> fmap; map<int,int> fmap1; }; + +} // namespace + +#endif + |