diff options
author | Patrick Simianer <p@simianer.de> | 2011-10-20 02:31:25 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-10-20 02:31:25 +0200 |
commit | a5a92ebe23c5819ed104313426012011e32539da (patch) | |
tree | 3416818c758d5ece4e71fe522c571e75ea04f100 /dtrain/dtrain.cc | |
parent | b88332caac2cbe737c99b8098813f868ca876d8b (diff) | |
parent | 78baccbb4231bb84a456702d4f574f8e601a8182 (diff) |
finalized merge
Diffstat (limited to 'dtrain/dtrain.cc')
-rw-r--r-- | dtrain/dtrain.cc | 70 |
1 files changed, 44 insertions, 26 deletions
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc index 0a94f7aa..05c3728d 100644 --- a/dtrain/dtrain.cc +++ b/dtrain/dtrain.cc @@ -20,8 +20,8 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg) ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences") ("print_weights", po::value<string>(), "weights to print on each iteration") ("hstreaming", po::value<bool>()->zero_tokens(), "run in hadoop streaming mode") - ("learning_rate", po::value<double>()->default_value(0.0005), "learning rate") - ("gamma", po::value<double>()->default_value(0), "gamma for SVM (0 for perceptron)") + ("learning_rate", po::value<weight_t>()->default_value(0.0005), "learning rate") + ("gamma", po::value<weight_t>()->default_value(0), "gamma for SVM (0 for perceptron)") ("tmp", po::value<string>()->default_value("/tmp"), "temp dir to use") ("select_weights", po::value<string>()->default_value("last"), "output 'best' or 'last' weights ('VOID' to throw away)") ("noup", po::value<bool>()->zero_tokens(), "do not update weights"); @@ -134,15 +134,14 @@ main(int argc, char** argv) observer->SetScorer(scorer); // init weights - Weights weights; - if (cfg.count("input_weights")) weights.InitFromFile(cfg["input_weights"].as<string>()); - SparseVector<double> lambdas; - weights.InitSparseVector(&lambdas); - vector<double> dense_weights; + vector<weight_t>& dense_weights = decoder.CurrentWeightVector(); + SparseVector<weight_t> lambdas; + if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &dense_weights); + Weights::InitSparseVector(dense_weights, &lambdas); // meta params for perceptron, SVM - double eta = cfg["learning_rate"].as<double>(); - double gamma = cfg["gamma"].as<double>(); + weight_t eta = cfg["learning_rate"].as<weight_t>(); + weight_t gamma = cfg["gamma"].as<weight_t>(); WordID __bias = FD::Convert("__bias"); lambdas.add_value(__bias, 0); @@ -160,7 +159,7 @@ main(int argc, char** argv) grammar_buf_out.open(grammar_buf_fn.c_str()); unsigned in_sz = 999999999; // input index, input size - vector<pair<score_t,score_t> > all_scores; + vector<pair<score_t, score_t> > all_scores; score_t max_score = 0.; unsigned best_it = 0; float overall_time = 0.; @@ -196,7 +195,8 @@ main(int argc, char** argv) time(&start); igzstream grammar_buf_in; if (t > 0) grammar_buf_in.open(grammar_buf_fn.c_str()); - score_t score_sum = 0., model_sum = 0.; + score_t score_sum = 0.; + score_t model_sum(0); unsigned ii = 0, nup = 0, npairs = 0; if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl; @@ -238,10 +238,7 @@ main(int argc, char** argv) if (next || stop) break; // weights - dense_weights.clear(); - weights.InitFromVector(lambdas); - weights.InitVector(&dense_weights); - decoder.SetWeights(dense_weights); + lambdas.init_vector(&dense_weights); // getting input vector<string> in_split; // input: sid\tsrc\tref\tpsg @@ -289,15 +286,24 @@ main(int argc, char** argv) // get (scored) samples vector<ScoredHyp>* samples = observer->GetSamples(); - if (verbose) { + // FIXME + /*if (verbose) { cout << "[ref: '"; - if (t > 0) cout << ref_ids_buf[ii]; + if (t > 0) cout << ref_ids_buf[ii]; <--- else cout << ref_ids; cout << endl; cout << _p5 << _np << "1best: " << "'" << (*samples)[0].w << "'" << endl; cout << "SCORE=" << (*samples)[0].score << ",model="<< (*samples)[0].model << endl; cout << "F{" << (*samples)[0].f << "} ]" << endl << endl; - } + }*/ + /*cout << lambdas.get(FD::Convert("PhraseModel_0")) << endl; + cout << (*samples)[0].model << endl; + cout << "1best: "; + for (unsigned u = 0; u < (*samples)[0].w.size(); u++) cout << TD::Convert((*samples)[0].w[u]) << " "; + cout << endl; + cout << (*samples)[0].f << endl; + cout << "___" << endl;*/ + score_sum += (*samples)[0].score; model_sum += (*samples)[0].model; @@ -317,21 +323,21 @@ main(int argc, char** argv) if (!gamma) { // perceptron if (it->first.score - it->second.score < 0) { // rank error - SparseVector<double> dv = it->second.f - it->first.f; + SparseVector<weight_t> dv = it->second.f - it->first.f; dv.add_value(__bias, -1); lambdas.plus_eq_v_times_s(dv, eta); nup++; } } else { // SVM - double rank_error = it->second.score - it->first.score; + score_t rank_error = it->second.score - it->first.score; if (rank_error > 0) { - SparseVector<double> dv = it->second.f - it->first.f; + SparseVector<weight_t> dv = it->second.f - it->first.f; dv.add_value(__bias, -1); lambdas.plus_eq_v_times_s(dv, eta); } // regularization - double margin = it->first.model - it->second.model; + score_t margin = it->first.model - it->second.model; if (rank_error || margin < 1) { lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta); // reg /= #EXAMPLES or #UPDATES ? nup++; @@ -339,6 +345,17 @@ main(int argc, char** argv) } } } + + // DEBUG + vector<weight_t> x; + lambdas.init_vector(&x); + //cout << "[" << ii << "]" << endl; + for (int jj = 0; jj < x.size(); jj++) { + //if (x[jj] != 0) + //cout << FD::Convert(jj) << " " << x[jj] << endl; + } + //cout << " --- " << endl; + // /DEBUG ++ii; @@ -358,7 +375,8 @@ main(int argc, char** argv) // print some stats score_t score_avg = score_sum/(score_t)in_sz; score_t model_avg = model_sum/(score_t)in_sz; - score_t score_diff, model_diff; + score_t score_diff; + score_t model_diff; if (t > 0) { score_diff = score_avg - all_scores[t-1].first; model_diff = model_avg - all_scores[t-1].second; @@ -402,10 +420,10 @@ main(int argc, char** argv) // write weights to file if (select_weights == "best") { - weights.InitFromVector(lambdas); string infix = "dtrain-weights-" + boost::lexical_cast<string>(t); + lambdas.init_vector(&dense_weights); string w_fn = gettmpf(tmp_path, infix, "gz"); - weights.WriteToFile(w_fn, true); + Weights::WriteToFile(w_fn, dense_weights, true); weights_files.push_back(w_fn); } @@ -420,7 +438,7 @@ main(int argc, char** argv) ostream& o = *of.stream(); o.precision(17); o << _np; - for (SparseVector<double>::const_iterator it = lambdas.begin(); it != lambdas.end(); ++it) { + for (SparseVector<weight_t>::const_iterator it = lambdas.begin(); it != lambdas.end(); ++it) { if (it->second == 0) continue; o << FD::Convert(it->first) << '\t' << it->second << endl; } |