summaryrefslogtreecommitdiff
path: root/dtrain/dtrain.cc
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2011-11-16 10:51:47 +0100
committerPatrick Simianer <p@simianer.de>2011-11-16 10:51:47 +0100
commita31b9b2bfdb232cc8fb2e4f05326c01c0cd2323d (patch)
tree6852d06067e571a88bc86c37896c934bfc99d1f8 /dtrain/dtrain.cc
parent4cd25af7a5f8ff9c0e9f6c08c46ca6969f539f7b (diff)
hadoop doesn't like double as amounts in counters
Diffstat (limited to 'dtrain/dtrain.cc')
-rw-r--r--dtrain/dtrain.cc16
1 files changed, 8 insertions, 8 deletions
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc
index d69e62e5..7cc6af6f 100644
--- a/dtrain/dtrain.cc
+++ b/dtrain/dtrain.cc
@@ -456,8 +456,8 @@ main(int argc, char** argv)
if (t == 0) {
in_sz = ii; // remember size of input (# lines)
if (hstreaming) {
- rep.update_counter("|Input|", ii+1);
- rep.update_gcounter("|Input|", ii+1);
+ rep.update_counter("|Input|", ii);
+ rep.update_gcounter("|Input|", ii);
rep.update_gcounter("Shards", 1u);
}
}
@@ -482,7 +482,7 @@ main(int argc, char** argv)
model_diff = model_avg;
}
- if (!quiet) {
+ if (true) {
cerr << _p5 << _p << "WEIGHTS" << endl;
for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) {
cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl;
@@ -501,11 +501,11 @@ main(int argc, char** argv)
}
if (hstreaming) {
- rep.update_counter("Score 1best avg #"+boost::lexical_cast<string>(t+1), score_avg);
- rep.update_counter("Model 1best avg #"+boost::lexical_cast<string>(t+1), model_avg);
- rep.update_counter("Pairs avg #"+boost::lexical_cast<string>(t+1), npairs/(weight_t)in_sz);
- rep.update_counter("Rank errors avg #"+boost::lexical_cast<string>(t+1), rank_errors/(weight_t)in_sz);
- rep.update_counter("Margin violations avg #"+boost::lexical_cast<string>(t+1), margin_violations/(weight_t)in_sz);
+ rep.update_counter("Score 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(score_avg*100000));
+ rep.update_counter("Model 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(model_avg*100000));
+ rep.update_counter("Pairs avg #"+boost::lexical_cast<string>(t+1), (unsigned)((npairs/(weight_t)in_sz)*100000));
+ rep.update_counter("Rank errors avg #"+boost::lexical_cast<string>(t+1), (unsigned)((rank_errors/(weight_t)in_sz)*100000));
+ rep.update_counter("Margin violations avg #"+boost::lexical_cast<string>(t+1), (unsigned)((margin_violations/(weight_t)in_sz)*100000));
unsigned nonz = (unsigned)lambdas.size_nonzero();
rep.update_counter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz);
rep.update_gcounter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz);