diff options
author | Chris Dyer <cdyer@cab.ark.cs.cmu.edu> | 2012-06-19 00:05:18 -0400 |
---|---|---|
committer | Chris Dyer <cdyer@cab.ark.cs.cmu.edu> | 2012-06-19 00:05:18 -0400 |
commit | 5975dcaa50adb5ce7a05b83583b8f9ddc45f3f0a (patch) | |
tree | 2bc2eb4e17576e0726d7a2fa7f20eac9061c311d /dtrain/dtrain.cc | |
parent | 78cc819168b2a550e52e9cac06dbbed41a3b04b2 (diff) | |
parent | ee1520c5095ea8648617a3658b20eedfd4dd2007 (diff) |
Merge branch 'master' of https://github.com/pks/cdec-dtrain
Diffstat (limited to 'dtrain/dtrain.cc')
-rw-r--r-- | dtrain/dtrain.cc | 97 |
1 files changed, 60 insertions, 37 deletions
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc index d9bce843..b3e62914 100644 --- a/dtrain/dtrain.cc +++ b/dtrain/dtrain.cc @@ -6,37 +6,39 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg) { po::options_description ini("Configuration File Options"); ini.add_options() - ("input", po::value<string>()->default_value("-"), "input file") - ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT") - ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)") - ("decoder_config", po::value<string>(), "configuration file for cdec") - ("print_weights", po::value<string>(), "weights to print on each iteration") - ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences") - ("tmp", po::value<string>()->default_value("/tmp"), "temp dir to use") - ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration") - ("hstreaming", po::value<string>(), "run in hadoop streaming mode, arg is a task id") - ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)") - ("k", po::value<unsigned>()->default_value(100), "how many translations to sample") - ("sample_from", po::value<string>()->default_value("kbest"), "where to sample translations from: 'kbest', 'forest'") - ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'") - ("pair_sampling", po::value<string>()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'") - ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5") - ("pair_threshold", po::value<score_t>()->default_value(0.), "bleu [0,1] threshold to filter pairs") - ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)") - ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_") - ("learning_rate", po::value<weight_t>()->default_value(0.0001), "learning rate") - ("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)") - ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)") - ("rescale", po::value<bool>()->zero_tokens(), "rescale weight vector after each input") - ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010)") - ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength") - ("fselect", po::value<weight_t>()->default_value(-1), "TODO select top x percent (or by threshold) of features after each epoch") - ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU") - ("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair") + ("input", po::value<string>()->default_value("-"), "input file") + ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT") + ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)") + ("decoder_config", po::value<string>(), "configuration file for cdec") + ("print_weights", po::value<string>(), "weights to print on each iteration") + ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences") + ("tmp", po::value<string>()->default_value("/tmp"), "temp dir to use") + ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration") + ("hstreaming", po::value<string>(), "run in hadoop streaming mode, arg is a task id") + ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)") + ("k", po::value<unsigned>()->default_value(100), "how many translations to sample") + ("sample_from", po::value<string>()->default_value("kbest"), "where to sample translations from: 'kbest', 'forest'") + ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'") + ("pair_sampling", po::value<string>()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'") + ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5") + ("pair_threshold", po::value<score_t>()->default_value(0.), "bleu [0,1] threshold to filter pairs") + ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)") + ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_, lc_") + ("learning_rate", po::value<weight_t>()->default_value(0.0001), "learning rate") + ("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)") + ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)") + ("rescale", po::value<bool>()->zero_tokens(), "rescale weight vector after each input") + ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010)") + ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength") + ("fselect", po::value<weight_t>()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPL") // TODO + ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU") + ("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair") + ("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near") + ("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.") #ifdef DTRAIN_LOCAL - ("refs,r", po::value<string>(), "references in local mode") + ("refs,r", po::value<string>(), "references in local mode") #endif - ("noup", po::value<bool>()->zero_tokens(), "do not update weights"); + ("noup", po::value<bool>()->zero_tokens(), "do not update weights"); po::options_description cl("Command Line Options"); cl.add_options() ("config,c", po::value<string>(), "dtrain config file") @@ -134,6 +136,9 @@ main(int argc, char** argv) const string select_weights = cfg["select_weights"].as<string>(); const float hi_lo = cfg["hi_lo"].as<float>(); const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>(); + const unsigned max_pairs = cfg["max_pairs"].as<unsigned>(); + weight_t loss_margin = cfg["loss_margin"].as<weight_t>(); + if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max(); bool scale_bleu_diff = false; if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true; bool average = false; @@ -160,8 +165,16 @@ main(int argc, char** argv) scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer); } else if (scorer_str == "smooth_bleu") { scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer); + } else if (scorer_str == "sum_bleu") { + scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer); + } else if (scorer_str == "sumexp_bleu") { + scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer); + } else if (scorer_str == "sumwhatever_bleu") { + scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer); } else if (scorer_str == "approx_bleu") { scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d)); + } else if (scorer_str == "lc_bleu") { + scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N)); } else { cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl; exit(1); @@ -220,7 +233,7 @@ main(int argc, char** argv) grammar_buf_out.open(grammar_buf_fn.c_str()); #endif - unsigned in_sz = UINT_MAX; // input index, input size + unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size vector<pair<score_t, score_t> > all_scores; score_t max_score = 0.; unsigned best_it = 0; @@ -242,6 +255,7 @@ main(int argc, char** argv) if (!scale_bleu_diff) cerr << setw(25) << "learning rate " << eta << endl; else cerr << setw(25) << "learning rate " << "bleu diff" << endl; cerr << setw(25) << "gamma " << gamma << endl; + cerr << setw(25) << "loss margin " << loss_margin << endl; cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl; if (pair_sampling == "XYX") cerr << setw(25) << "hi lo " << hi_lo << endl; @@ -251,6 +265,7 @@ main(int argc, char** argv) cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl; if (rescale) cerr << setw(25) << "rescale " << rescale << endl; + cerr << setw(25) << "max pairs " << max_pairs << endl; cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl; cerr << setw(25) << "input " << "'" << input_fn << "'" << endl; #ifdef DTRAIN_LOCAL @@ -415,21 +430,27 @@ main(int argc, char** argv) // get pairs vector<pair<ScoredHyp,ScoredHyp> > pairs; if (pair_sampling == "all") - all_pairs(samples, pairs, pair_threshold); + all_pairs(samples, pairs, pair_threshold, max_pairs); if (pair_sampling == "XYX") - partXYX(samples, pairs, pair_threshold, hi_lo); + partXYX(samples, pairs, pair_threshold, max_pairs, hi_lo); if (pair_sampling == "PRO") - PROsampling(samples, pairs, pair_threshold); + PROsampling(samples, pairs, pair_threshold, max_pairs); npairs += pairs.size(); for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin(); it != pairs.end(); it++) { +#ifdef DTRAIN_FASTER_PERCEPTRON + bool rank_error = true; // pair sampling already did this for us + rank_errors++; + score_t margin = std::numeric_limits<float>::max(); +#else bool rank_error = it->first.model <= it->second.model; if (rank_error) rank_errors++; - score_t margin = fabs(it->first.model - it->second.model); - if (!rank_error && margin < 1) margin_violations++; + score_t margin = fabs(fabs(it->first.model) - fabs(it->second.model)); + if (!rank_error && margin < loss_margin) margin_violations++; +#endif if (scale_bleu_diff) eta = it->first.score - it->second.score; - if (rank_error || (gamma && margin<1)) { + if (rank_error || margin < loss_margin) { SparseVector<weight_t> diff_vec = it->first.f - it->second.f; lambdas.plus_eq_v_times_s(diff_vec, eta); if (gamma) @@ -486,7 +507,7 @@ main(int argc, char** argv) if (average) w_average += lambdas; - if (scorer_str == "approx_bleu") scorer->Reset(); + if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset(); if (t == 0) { in_sz = ii; // remember size of input (# lines) @@ -534,8 +555,10 @@ main(int argc, char** argv) cerr << _np << npairs/(float)in_sz << endl; cerr << " avg # rank err: "; cerr << rank_errors/(float)in_sz << endl; +#ifndef DTRAIN_FASTER_PERCEPTRON cerr << " avg # margin viol: "; cerr << margin_violations/(float)in_sz << endl; +#endif cerr << " non0 feature count: " << nonz << endl; cerr << " avg list sz: " << list_sz/(float)in_sz << endl; cerr << " avg f count: " << f_count/(float)list_sz << endl; |