summaryrefslogtreecommitdiff
path: root/dpmert/line_optimizer.cc
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
committerPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
commitc3a9ea64251605532c7954959662643a6a927bb7 (patch)
treefed6048a5acdaf3834740107771c2bc48f26fd4d /dpmert/line_optimizer.cc
parent867bca3e5fa0cdd63bf032e5859fb5092d9a4ca1 (diff)
parenta45af4a3704531a8382cd231f6445b3a33b598a3 (diff)
merge with upstream
Diffstat (limited to 'dpmert/line_optimizer.cc')
-rw-r--r--dpmert/line_optimizer.cc111
1 files changed, 111 insertions, 0 deletions
diff --git a/dpmert/line_optimizer.cc b/dpmert/line_optimizer.cc
new file mode 100644
index 00000000..49443fbe
--- /dev/null
+++ b/dpmert/line_optimizer.cc
@@ -0,0 +1,111 @@
+#include "line_optimizer.h"
+
+#include <limits>
+#include <algorithm>
+
+#include "sparse_vector.h"
+#include "ns.h"
+
+using namespace std;
+
+typedef ErrorSurface::const_iterator ErrorIter;
+
+// sort by increasing x-ints
+struct IntervalComp {
+ bool operator() (const ErrorIter& a, const ErrorIter& b) const {
+ return a->x < b->x;
+ }
+};
+
+double LineOptimizer::LineOptimize(
+ const EvaluationMetric* metric,
+ const vector<ErrorSurface>& surfaces,
+ const LineOptimizer::ScoreType type,
+ float* best_score,
+ const double epsilon) {
+ // cerr << "MIN=" << MINIMIZE_SCORE << " MAX=" << MAXIMIZE_SCORE << " MINE=" << type << endl;
+ vector<ErrorIter> all_ints;
+ for (vector<ErrorSurface>::const_iterator i = surfaces.begin();
+ i != surfaces.end(); ++i) {
+ const ErrorSurface& surface = *i;
+ for (ErrorIter j = surface.begin(); j != surface.end(); ++j)
+ all_ints.push_back(j);
+ }
+ sort(all_ints.begin(), all_ints.end(), IntervalComp());
+ double last_boundary = all_ints.front()->x;
+ SufficientStats acc;
+ float& cur_best_score = *best_score;
+ cur_best_score = (type == MAXIMIZE_SCORE ?
+ -numeric_limits<float>::max() : numeric_limits<float>::max());
+ bool left_edge = true;
+ double pos = numeric_limits<double>::quiet_NaN();
+ for (vector<ErrorIter>::iterator i = all_ints.begin();
+ i != all_ints.end(); ++i) {
+ const ErrorSegment& seg = **i;
+ if (seg.x - last_boundary > epsilon) {
+ float sco = metric->ComputeScore(acc);
+ if ((type == MAXIMIZE_SCORE && sco > cur_best_score) ||
+ (type == MINIMIZE_SCORE && sco < cur_best_score) ) {
+ cur_best_score = sco;
+ if (left_edge) {
+ pos = seg.x - 0.1;
+ left_edge = false;
+ } else {
+ pos = last_boundary + (seg.x - last_boundary) / 2;
+ }
+ //cerr << "NEW BEST: " << pos << " (score=" << cur_best_score << ")\n";
+ }
+ // string xx = metric->DetailedScore(acc); cerr << "---- " << xx;
+ // cerr << "---- s=" << sco << "\n";
+ last_boundary = seg.x;
+ }
+ // cerr << "x-boundary=" << seg.x << "\n";
+ //string x2; acc.Encode(&x2); cerr << " ACC: " << x2 << endl;
+ //string x1; seg.delta.Encode(&x1); cerr << " DELTA: " << x1 << endl;
+ acc += seg.delta;
+ }
+ float sco = metric->ComputeScore(acc);
+ if ((type == MAXIMIZE_SCORE && sco > cur_best_score) ||
+ (type == MINIMIZE_SCORE && sco < cur_best_score) ) {
+ cur_best_score = sco;
+ if (left_edge) {
+ pos = 0;
+ } else {
+ pos = last_boundary + 1000.0;
+ }
+ }
+ return pos;
+}
+
+void LineOptimizer::RandomUnitVector(const vector<int>& features_to_optimize,
+ SparseVector<double>* axis,
+ RandomNumberGenerator<boost::mt19937>* rng) {
+ axis->clear();
+ for (int i = 0; i < features_to_optimize.size(); ++i)
+ axis->set_value(features_to_optimize[i], rng->NextNormal(0.0,1.0));
+ (*axis) /= axis->l2norm();
+}
+
+void LineOptimizer::CreateOptimizationDirections(
+ const vector<int>& features_to_optimize,
+ int additional_random_directions,
+ RandomNumberGenerator<boost::mt19937>* rng,
+ vector<SparseVector<double> >* dirs
+ , bool include_orthogonal
+ ) {
+ dirs->clear();
+ typedef SparseVector<double> Dir;
+ vector<Dir> &out=*dirs;
+ int i=0;
+ if (include_orthogonal)
+ for (;i<features_to_optimize.size();++i) {
+ Dir d;
+ d.set_value(features_to_optimize[i],1.);
+ out.push_back(d);
+ }
+ out.resize(i+additional_random_directions);
+ for (;i<out.size();++i)
+ RandomUnitVector(features_to_optimize, &out[i], rng);
+ cerr << "Generated " << out.size() << " total axes to optimize along.\n";
+}
+