summaryrefslogtreecommitdiff
path: root/decoder
diff options
context:
space:
mode:
authorvladimir.eidelman <vladimir.eidelman@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-07-14 23:00:08 +0000
committervladimir.eidelman <vladimir.eidelman@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-07-14 23:00:08 +0000
commit1350b8e8e465acc9d4d8d43d807cc6093e8f37b9 (patch)
treeddbf972363b1d51ecca6d27e1ef226391a4e7151 /decoder
parentdc6e2c9c453a76f0bb3dfbca4471e763cc8af1e7 (diff)
Added oracle forest rescoring
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@254 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'decoder')
-rw-r--r--decoder/Makefile.am7
-rw-r--r--decoder/cdec.cc154
-rw-r--r--decoder/cdec_ff.cc2
-rw-r--r--decoder/ff_bleu.cc285
-rw-r--r--decoder/ff_bleu.h32
-rw-r--r--decoder/sentence_metadata.h13
6 files changed, 485 insertions, 8 deletions
diff --git a/decoder/Makefile.am b/decoder/Makefile.am
index 49aa45d0..e7b6abd8 100644
--- a/decoder/Makefile.am
+++ b/decoder/Makefile.am
@@ -74,6 +74,13 @@ libcdec_a_SOURCES = \
ff_wordalign.cc \
ff_csplit.cc \
ff_tagger.cc \
+ ff_bleu.cc \
+ ../vest/scorer.cc \
+ ../vest/ter.cc \
+ ../vest/aer_scorer.cc \
+ ../vest/comb_scorer.cc \
+ ../vest/error_surface.cc \
+ ../vest/viterbi_envelope.cc \
tromble_loss.cc \
freqdict.cc \
lexalign.cc \
diff --git a/decoder/cdec.cc b/decoder/cdec.cc
index b6cc6f66..5f06b0c8 100644
--- a/decoder/cdec.cc
+++ b/decoder/cdec.cc
@@ -32,6 +32,7 @@
#include "inside_outside.h"
#include "exp_semiring.h"
#include "sentence_metadata.h"
+#include "../vest/scorer.h"
using namespace std;
using namespace std::tr1;
@@ -143,7 +144,9 @@ void InitCommandLine(int argc, char** argv, po::variables_map* confp) {
("pb_max_distortion,D", po::value<int>()->default_value(4), "Phrase-based decoder: maximum distortion")
("cll_gradient,G","Compute conditional log-likelihood gradient and write to STDOUT (src & ref required)")
("crf_uniform_empirical", "If there are multple references use (i.e., lattice) a uniform distribution rather than posterior weighting a la EM")
- ("feature_expectations","Write feature expectations for all features in chart (**OBJ** will be the partition)")
+ ("get_oracle_forest,OO", "Calculate rescored hypregraph using approximate BLEU scoring of rules")
+ ("feature_expectations","Write feature expectations for all features in chart (**OBJ** will be the partition)")
+ ("references,R", po::value<vector<string> >(), "Translation reference files")
("vector_format",po::value<string>()->default_value("b64"), "Sparse vector serialization format for feature expectations or gradients, includes (text or b64)")
("combine_size,C",po::value<int>()->default_value(1), "When option -G is used, process this many sentence pairs before writing the gradient (1=emit after every sentence pair)")
("forest_output,O",po::value<string>(),"Directory to write forests to")
@@ -258,16 +261,30 @@ void MaxTranslationSample(Hypergraph* hg, const int samples, const int k) {
}
// TODO decoder output should probably be moved to another file
-void DumpKBest(const int sent_id, const Hypergraph& forest, const int k, const bool unique) {
+void DumpKBest(const int sent_id, const Hypergraph& forest, const int k, const bool unique, const char *kbest_out_filename_, float doc_src_length, float tmp_src_length, const DocScorer &ds, Score* doc_score) {
cerr << "In kbest\n";
+
+ ofstream kbest_out;
+ kbest_out.open(kbest_out_filename_);
+ cerr << "Output kbest to " << kbest_out_filename_;
+
+ //add length (f side) src length of this sentence to the psuedo-doc src length count
+ float curr_src_length = doc_src_length + tmp_src_length;
+
if (unique) {
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique> kbest(forest, k);
for (int i = 0; i < k; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique>::Derivation* d =
kbest.LazyKthBest(forest.nodes_.size() - 1, i);
if (!d) break;
- cout << sent_id << " ||| " << TD::GetString(d->yield) << " ||| "
- << d->feature_values << " ||| " << log(d->score) << endl;
+ //calculate score in context of psuedo-doc
+ Score* sentscore = ds[sent_id]->ScoreCandidate(d->yield);
+ sentscore->PlusEquals(*doc_score,float(1));
+ float bleu = curr_src_length * sentscore->ComputeScore();
+ kbest_out << sent_id << " ||| " << TD::GetString(d->yield) << " ||| "
+ << d->feature_values << " ||| " << log(d->score) << " ||| " << bleu << endl;
+ // cout << sent_id << " ||| " << TD::GetString(d->yield) << " ||| "
+ // << d->feature_values << " ||| " << log(d->score) << endl;
}
} else {
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k);
@@ -498,6 +515,48 @@ int main(int argc, char** argv) {
const bool kbest = conf.count("k_best");
const bool unique_kbest = conf.count("unique_k_best");
const bool crf_uniform_empirical = conf.count("crf_uniform_empirical");
+ const bool get_oracle_forest = conf.count("get_oracle_forest");
+
+ /*Oracle Extraction Prep*/
+ vector<const FeatureFunction*> oracle_model_ffs;
+ vector<double> oracle_feature_weights;
+ shared_ptr<FeatureFunction> oracle_pff;
+ if(get_oracle_forest) {
+
+ /*Add feature for oracle rescoring */
+ string ff, param;
+ ff="BLEUModel";
+ //pass the location of the references file via param to BLEUModel
+ for(int kk=0;kk < conf["references"].as<vector<string> >().size();kk++)
+ {
+ param = param + " " + conf["references"].as<vector<string> >()[kk];
+ }
+ cerr << "Feature: " << ff << "->" << param << endl;
+ oracle_pff = global_ff_registry->Create(ff,param);
+ if (!oracle_pff) { exit(1); }
+ oracle_model_ffs.push_back(oracle_pff.get());
+ oracle_feature_weights.push_back(1.0);
+
+ }
+
+ ModelSet oracle_models(oracle_feature_weights, oracle_model_ffs);
+
+ const string loss_function3 = "IBM_BLEU_3";
+ ScoreType type3 = ScoreTypeFromString(loss_function3);
+ const DocScorer ds(type3, conf["references"].as<vector<string> >(), "");
+ cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function3 << endl;
+
+
+ std::ostringstream kbest_string_stream;
+ Score* doc_score=NULL;
+ float doc_src_length=0;
+ float tmp_src_length=0;
+ int oracle_doc_size= 10; //used for scaling/weighting oracle doc
+ float scale_oracle= 1-float(1)/oracle_doc_size;
+
+ /*End Oracle Extraction Prep*/
+
+
shared_ptr<WriteFile> extract_file;
if (conf.count("extract_rules"))
extract_file.reset(new WriteFile(str("extract_rules",conf)));
@@ -610,6 +669,87 @@ int main(int argc, char** argv) {
maybe_prune(forest,conf,"beam_prune","density_prune","+LM",srclen);
+ vector<WordID> trans;
+ ViterbiESentence(forest, &trans);
+
+ /*Oracle Rescoring*/
+ if(get_oracle_forest)
+ {
+ Timer t("Forest Oracle rescoring:");
+ vector<WordID> model_trans;
+ model_trans = trans;
+
+ trans=model_trans;
+ Score* sentscore = ds[sent_id]->ScoreCandidate(model_trans);
+ //initilize psuedo-doc vector to 1 counts
+ if (!doc_score) { doc_score = sentscore->GetOne(); }
+ double bleu_scale_ = doc_src_length * doc_score->ComputeScore();
+ tmp_src_length = smeta.GetSourceLength();
+ smeta.SetScore(doc_score);
+ smeta.SetDocLen(doc_src_length);
+ smeta.SetDocScorer(&ds);
+
+ feature_weights[0]=1.0;
+
+ kbest_string_stream << conf["forest_output"].as<string>() << "/kbest_model" << "." << sent_id;
+ DumpKBest(sent_id, forest, 10, true, kbest_string_stream.str().c_str(), doc_src_length, tmp_src_length, ds, doc_score);
+ kbest_string_stream.str("");
+
+
+ forest.SortInEdgesByEdgeWeights();
+ Hypergraph lm_forest;
+ const IntersectionConfiguration inter_conf_oracle(0, 0);
+ cerr << "Going to call Apply Model " << endl;
+ ApplyModelSet(forest,
+ smeta,
+ oracle_models,
+ inter_conf_oracle,
+ &lm_forest);
+
+ forest.swap(lm_forest);
+ forest.Reweight(feature_weights);
+ forest.SortInEdgesByEdgeWeights();
+ vector<WordID> oracle_trans;
+
+ ViterbiESentence(forest, &oracle_trans);
+ cerr << " +Oracle BLEU forest (nodes/edges): " << forest.nodes_.size() << '/' << forest.edges_.size() << endl;
+ cerr << " +Oracle BLEU (paths): " << forest.NumberOfPaths() << endl;
+ cerr << " +Oracle BLEU Viterbi: " << TD::GetString(oracle_trans) << endl;
+
+ //compute kbest for oracle
+ kbest_string_stream << conf["forest_output"].as<string>() <<"/kbest_oracle" << "." << sent_id;
+ DumpKBest(sent_id, forest, 10, true, kbest_string_stream.str().c_str(), doc_src_length, tmp_src_length, ds, doc_score);
+ kbest_string_stream.str("");
+
+
+ //reweight the model with -1 for the BLEU feature to compute k-best list for negative examples
+ feature_weights[0]=-1.0;
+ forest.Reweight(feature_weights);
+ forest.SortInEdgesByEdgeWeights();
+ vector<WordID> neg_trans;
+ ViterbiESentence(forest, &neg_trans);
+ cerr << " -Oracle BLEU forest (nodes/edges): " << forest.nodes_.size() << '/' << forest.edges_.size() << endl;
+ cerr << " -Oracle BLEU (paths): " << forest.NumberOfPaths() << endl;
+ cerr << " -Oracle BLEU Viterbi: " << TD::GetString(neg_trans) << endl;
+
+ //compute kbest for negative
+ kbest_string_stream << conf["forest_output"].as<string>() << "/kbest_negative" << "." << sent_id;
+ DumpKBest(sent_id, forest, 10, true, kbest_string_stream.str().c_str(), doc_src_length, tmp_src_length,ds, doc_score);
+ kbest_string_stream.str("");
+
+ //Add 1-best translation (trans) to psuedo-doc vectors
+ doc_score->PlusEquals(*sentscore, scale_oracle);
+ delete sentscore;
+
+ doc_src_length = (doc_src_length + tmp_src_length) * scale_oracle;
+
+
+ string details;
+ doc_score->ScoreDetails(&details);
+ cerr << "SCALED SCORE: " << bleu_scale_ << "DOC BLEU " << doc_score->ComputeScore() << " " <<details << endl;
+ }
+
+
if (conf.count("forest_output") && !has_ref) {
ForestWriter writer(str("forest_output",conf), sent_id);
if (FileExists(writer.fname_)) {
@@ -632,11 +772,9 @@ int main(int argc, char** argv) {
if (sample_max_trans) {
MaxTranslationSample(&forest, sample_max_trans, conf.count("k_best") ? conf["k_best"].as<int>() : 0);
} else {
- vector<WordID> trans;
- ViterbiESentence(forest, &trans);
-
+
if (kbest) {
- DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest);
+ DumpKBest(sent_id, forest, conf["k_best"].as<int>(), unique_kbest,"", doc_src_length, tmp_src_length, ds, doc_score);
} else if (csplit_output_plf) {
cout << HypergraphIO::AsPLF(forest, false) << endl;
} else {
diff --git a/decoder/cdec_ff.cc b/decoder/cdec_ff.cc
index 077956a8..c91780e2 100644
--- a/decoder/cdec_ff.cc
+++ b/decoder/cdec_ff.cc
@@ -7,6 +7,7 @@
#include "ff_tagger.h"
#include "ff_factory.h"
#include "ff_ruleshape.h"
+#include "ff_bleu.h"
boost::shared_ptr<FFRegistry> global_ff_registry;
@@ -20,6 +21,7 @@ void register_feature_functions() {
global_ff_registry->Register(new FFFactory<WordPenalty>);
global_ff_registry->Register(new FFFactory<SourceWordPenalty>);
global_ff_registry->Register(new FFFactory<ArityPenalty>);
+ global_ff_registry->Register("BLEUModel", new FFFactory<BLEUModel>);
global_ff_registry->Register("RuleShape", new FFFactory<RuleShapeFeatures>);
global_ff_registry->Register("RelativeSentencePosition", new FFFactory<RelativeSentencePosition>);
global_ff_registry->Register("Model2BinaryFeatures", new FFFactory<Model2BinaryFeatures>);
diff --git a/decoder/ff_bleu.cc b/decoder/ff_bleu.cc
new file mode 100644
index 00000000..4a13f89e
--- /dev/null
+++ b/decoder/ff_bleu.cc
@@ -0,0 +1,285 @@
+#include "ff_bleu.h"
+
+#include <sstream>
+#include <unistd.h>
+
+#include <boost/shared_ptr.hpp>
+
+#include "tdict.h"
+#include "Vocab.h"
+#include "Ngram.h"
+#include "hg.h"
+#include "stringlib.h"
+#include "sentence_metadata.h"
+#include "../vest/scorer.h"
+
+using namespace std;
+
+class BLEUModelImpl {
+ public:
+ explicit BLEUModelImpl(int order) :
+ ngram_(*TD::dict_, order), buffer_(), order_(order), state_size_(OrderToStateSize(order) - 1),
+ floor_(-100.0),
+ kSTART(TD::Convert("<s>")),
+ kSTOP(TD::Convert("</s>")),
+ kUNKNOWN(TD::Convert("<unk>")),
+ kNONE(-1),
+ kSTAR(TD::Convert("<{STAR}>")) {}
+
+ BLEUModelImpl(int order, const string& f) :
+ ngram_(*TD::dict_, order), buffer_(), order_(order), state_size_(OrderToStateSize(order) - 1),
+ floor_(-100.0),
+ kSTART(TD::Convert("<s>")),
+ kSTOP(TD::Convert("</s>")),
+ kUNKNOWN(TD::Convert("<unk>")),
+ kNONE(-1),
+ kSTAR(TD::Convert("<{STAR}>")) {}
+
+
+ virtual ~BLEUModelImpl() {
+ }
+
+ inline int StateSize(const void* state) const {
+ return *(static_cast<const char*>(state) + state_size_);
+ }
+
+ inline void SetStateSize(int size, void* state) const {
+ *(static_cast<char*>(state) + state_size_) = size;
+ }
+
+ void GetRefToNgram()
+ {}
+
+ string DebugStateToString(const void* state) const {
+ int len = StateSize(state);
+ const int* astate = reinterpret_cast<const int*>(state);
+ string res = "[";
+ for (int i = 0; i < len; ++i) {
+ res += " ";
+ res += TD::Convert(astate[i]);
+ }
+ res += " ]";
+ return res;
+ }
+
+ inline double ProbNoRemnant(int i, int len) {
+ int edge = len;
+ bool flag = true;
+ double sum = 0.0;
+ while (i >= 0) {
+ if (buffer_[i] == kSTAR) {
+ edge = i;
+ flag = false;
+ } else if (buffer_[i] <= 0) {
+ edge = i;
+ flag = true;
+ } else {
+ if ((edge-i >= order_) || (flag && !(i == (len-1) && buffer_[i] == kSTART)))
+ { //sum += LookupProbForBufferContents(i);
+ //cerr << "FT";
+ CalcPhrase(buffer_[i], &buffer_[i+1]);
+ }
+ }
+ --i;
+ }
+ return sum;
+ }
+
+ double FinalTraversalCost(const void* state) {
+ int slen = StateSize(state);
+ int len = slen + 2;
+ // cerr << "residual len: " << len << endl;
+ buffer_.resize(len + 1);
+ buffer_[len] = kNONE;
+ buffer_[len-1] = kSTART;
+ const int* astate = reinterpret_cast<const int*>(state);
+ int i = len - 2;
+ for (int j = 0; j < slen; ++j,--i)
+ buffer_[i] = astate[j];
+ buffer_[i] = kSTOP;
+ assert(i == 0);
+ return ProbNoRemnant(len - 1, len);
+ }
+
+ vector<WordID> CalcPhrase(int word, int* context) {
+ int i = order_;
+ vector<WordID> vs;
+ int c = 1;
+ vs.push_back(word);
+ // while (i > 1 && *context > 0) {
+ while (*context > 0) {
+ --i;
+ vs.push_back(*context);
+ ++context;
+ ++c;
+ }
+ if(false){ cerr << "VS1( ";
+ vector<WordID>::reverse_iterator rit;
+ for ( rit=vs.rbegin() ; rit != vs.rend(); ++rit )
+ cerr << " " << TD::Convert(*rit);
+ cerr << ")\n";}
+
+ return vs;
+ }
+
+
+ double LookupWords(const TRule& rule, const vector<const void*>& ant_states, void* vstate, const SentenceMetadata& smeta) {
+
+ int len = rule.ELength() - rule.Arity();
+
+ for (int i = 0; i < ant_states.size(); ++i)
+ len += StateSize(ant_states[i]);
+ buffer_.resize(len + 1);
+ buffer_[len] = kNONE;
+ int i = len - 1;
+ const vector<WordID>& e = rule.e();
+
+ /*cerr << "RULE::" << rule.ELength() << " ";
+ for (vector<WordID>::const_iterator i = e.begin(); i != e.end(); ++i)
+ {
+ const WordID& c = *i;
+ if(c > 0) cerr << TD::Convert(c) << "--";
+ else cerr <<"N--";
+ }
+ cerr << endl;
+ */
+
+ for (int j = 0; j < e.size(); ++j) {
+ if (e[j] < 1) {
+ const int* astate = reinterpret_cast<const int*>(ant_states[-e[j]]);
+ int slen = StateSize(astate);
+ for (int k = 0; k < slen; ++k)
+ buffer_[i--] = astate[k];
+ } else {
+ buffer_[i--] = e[j];
+ }
+ }
+
+ double approx_bleu = 0.0;
+ int* remnant = reinterpret_cast<int*>(vstate);
+ int j = 0;
+ i = len - 1;
+ int edge = len;
+
+
+ vector<WordID> vs;
+ while (i >= 0) {
+ vs = CalcPhrase(buffer_[i],&buffer_[i+1]);
+ if (buffer_[i] == kSTAR) {
+ edge = i;
+ } else if (edge-i >= order_) {
+
+ vs = CalcPhrase(buffer_[i],&buffer_[i+1]);
+
+ } else if (edge == len && remnant) {
+ remnant[j++] = buffer_[i];
+ }
+ --i;
+ }
+
+ //calculate Bvector here
+ /* cerr << "VS1( ";
+ vector<WordID>::reverse_iterator rit;
+ for ( rit=vs.rbegin() ; rit != vs.rend(); ++rit )
+ cerr << " " << TD::Convert(*rit);
+ cerr << ")\n";
+ */
+
+ Score *node_score = smeta.GetDocScorer()[smeta.GetSentenceID()]->ScoreCCandidate(vs);
+ string details;
+ node_score->ScoreDetails(&details);
+ const Score *base_score= &smeta.GetScore();
+ //cerr << "SWBASE : " << base_score->ComputeScore() << details << " ";
+
+ int src_length = smeta.GetSourceLength();
+ node_score->PlusPartialEquals(*base_score, rule.EWords(), rule.FWords(), src_length );
+ float oracledoc_factor = (src_length + smeta.GetDocLen())/ src_length;
+
+ //how it seems to be done in code
+ //TODO: might need to reverse the -1/+1 of the oracle/neg examples
+ approx_bleu = ( rule.FWords() * oracledoc_factor ) * node_score->ComputeScore();
+ //how I thought it was done from the paper
+ //approx_bleu = ( rule.FWords()+ smeta.GetDocLen() ) * node_score->ComputeScore();
+
+ if (!remnant){ return approx_bleu;}
+
+ if (edge != len || len >= order_) {
+ remnant[j++] = kSTAR;
+ if (order_-1 < edge) edge = order_-1;
+ for (int i = edge-1; i >= 0; --i)
+ remnant[j++] = buffer_[i];
+ }
+
+ SetStateSize(j, vstate);
+ //cerr << "Return APPROX_BLEU: " << approx_bleu << " "<< DebugStateToString(vstate) << endl;
+ return approx_bleu;
+ }
+
+ static int OrderToStateSize(int order) {
+ return ((order-1) * 2 + 1) * sizeof(WordID) + 1;
+ }
+
+ protected:
+ Ngram ngram_;
+ vector<WordID> buffer_;
+ const int order_;
+ const int state_size_;
+ const double floor_;
+
+ public:
+ const WordID kSTART;
+ const WordID kSTOP;
+ const WordID kUNKNOWN;
+ const WordID kNONE;
+ const WordID kSTAR;
+};
+
+BLEUModel::BLEUModel(const string& param) :
+ fid_(0) { //The partial BLEU score is kept in feature id=0
+ vector<string> argv;
+ int argc = SplitOnWhitespace(param, &argv);
+ int order = 3;
+ string filename;
+
+ //loop over argv and load all references into vector of NgramMaps
+ if (argc < 1) { cerr << "BLEUModel requires a filename, minimally!\n"; abort(); }
+
+
+ SetStateSize(BLEUModelImpl::OrderToStateSize(order));
+ pimpl_ = new BLEUModelImpl(order, filename);
+}
+
+BLEUModel::~BLEUModel() {
+ delete pimpl_;
+}
+
+string BLEUModel::DebugStateToString(const void* state) const{
+ return pimpl_->DebugStateToString(state);
+}
+
+void BLEUModel::TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const vector<const void*>& ant_states,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* state) const {
+
+ (void) smeta;
+ /*cerr << "In BM calling set " << endl;
+ const Score *s= &smeta.GetScore();
+ const int dl = smeta.GetDocLen();
+ cerr << "SCO " << s->ComputeScore() << endl;
+ const DocScorer *ds = &smeta.GetDocScorer();
+ */
+
+ cerr<< "Loading sentence " << smeta.GetSentenceID() << endl;
+ //}
+ features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, state, smeta));
+ //cerr << "FID" << fid_ << " " << DebugStateToString(state) << endl;
+}
+
+void BLEUModel::FinalTraversalFeatures(const void* ant_state,
+ SparseVector<double>* features) const {
+
+ features->set_value(fid_, pimpl_->FinalTraversalCost(ant_state));
+}
diff --git a/decoder/ff_bleu.h b/decoder/ff_bleu.h
new file mode 100644
index 00000000..fb127241
--- /dev/null
+++ b/decoder/ff_bleu.h
@@ -0,0 +1,32 @@
+#ifndef _BLEU_FF_H_
+#define _BLEU_FF_H_
+
+#include <vector>
+#include <string>
+
+#include "hg.h"
+#include "ff.h"
+#include "config.h"
+
+class BLEUModelImpl;
+
+class BLEUModel : public FeatureFunction {
+ public:
+ // param = "filename.lm [-o n]"
+ BLEUModel(const std::string& param);
+ ~BLEUModel();
+ virtual void FinalTraversalFeatures(const void* context,
+ SparseVector<double>* features) const;
+ std::string DebugStateToString(const void* state) const;
+ protected:
+ virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* out_context) const;
+ private:
+ const int fid_;
+ mutable BLEUModelImpl* pimpl_;
+};
+#endif
diff --git a/decoder/sentence_metadata.h b/decoder/sentence_metadata.h
index ef9eb388..21be9b21 100644
--- a/decoder/sentence_metadata.h
+++ b/decoder/sentence_metadata.h
@@ -3,6 +3,7 @@
#include <cassert>
#include "lattice.h"
+#include "../vest/scorer.h"
struct SentenceMetadata {
SentenceMetadata(int id, const Lattice& ref) :
@@ -30,10 +31,22 @@ struct SentenceMetadata {
// this will be empty if the translator accepts non FS input!
const Lattice& GetSourceLattice() const { return src_lattice_; }
+ // access to document level scores for MIRA vector computation
+ void SetScore(Score *s){app_score=s;}
+ void SetDocScorer (const DocScorer *d){ds = d;}
+ void SetDocLen(double dl){doc_len = dl;}
+
+ const Score& GetScore() const { return *app_score; }
+ const DocScorer& GetDocScorer() const { return *ds; }
+ double GetDocLen() const {return doc_len;}
+
private:
const int sent_id_;
// the following should be set, if possible, by the Translator
int src_len_;
+ double doc_len;
+ const DocScorer* ds;
+ const Score* app_score;
public:
Lattice src_lattice_; // this will only be set if inputs are finite state!
private: