summaryrefslogtreecommitdiff
path: root/decoder/dwarf.h
diff options
context:
space:
mode:
authorChris Dyer <cdyer@Chriss-MacBook-Air.local>2013-11-10 00:58:44 -0500
committerChris Dyer <cdyer@Chriss-MacBook-Air.local>2013-11-10 00:58:44 -0500
commit2d3948b98bb9e8c7bad60f1acd99ff0b42b3ae30 (patch)
tree22cd235bd6c94ee25c1ab9b2cf2a2d1d9aaec5c5 /decoder/dwarf.h
parent074fa88375967adababc632ea763e9dea389831e (diff)
guard against direct includes of tr1
Diffstat (limited to 'decoder/dwarf.h')
-rw-r--r--decoder/dwarf.h286
1 files changed, 0 insertions, 286 deletions
diff --git a/decoder/dwarf.h b/decoder/dwarf.h
deleted file mode 100644
index 49d2a3b7..00000000
--- a/decoder/dwarf.h
+++ /dev/null
@@ -1,286 +0,0 @@
-#ifndef DWARF_H
-#define DWARF_H
-
-#include <cstdlib>
-#include <vector>
-#include <map>
-#include <string>
-#include <ostream>
-#include "wordid.h"
-#include "lattice.h"
-#include "trule.h"
-#include "tdict.h"
-#include <boost/functional/hash.hpp>
-#include <tr1/unordered_map>
-#include <boost/tuple/tuple.hpp>
-
-using namespace std;
-using namespace std::tr1;
-using namespace boost::tuples;
-using namespace boost;
-
-const static bool DEBUG = false;
-
-class CountTable {
-public:
- int* ultimate;
- map<WordID,int*> model;
- int mode;
- int numColumn;
- void print() const;
- void setup(int _numcolumn, int _mode) {
- mode = _mode; numColumn = _numcolumn;
- }
-};
-
-class Alignment {
-/* Alignment represents an alignment object in a 2D format to support function word-based models calculation
-
- A note about model's parameter estimation:
- ==========================================
- The model is estimated as a two-level Dirichlet process.
- For orientation model, the first tier estimation is:
- P(o|f,e) where *o* is the orientation value to estimate, *f* is the source function word aligned to *e*
- its second tier is: P(o|f), while its third tier is P(o)
- For dominance model, the first tier estimation is:
- P(d|f1,f2,e1,e2) where *d* is a dominance value to estimate, *f1,f2* are the neighboring function words on the source
- aligned to *e1,e2* on the target side
- its second tier is: P(d|f1,f2) while its third tier is P(d)
-
- Taking orientation model as a case in point, a two level estimation proceeds as follow:
- P(o|f,e) = c(o,f,e) + alpha { c(o,f) + beta [ c (o) / c(.) ] }
- ------------------------------
- c(f) + beta
- -------------------------------------------------
- c(f,e) + alpha
- where c() is a count function, alpha and beta are the concentration parameter
- of the first and second Dirichlet process respectively
- To encourage or penalize the use of second and third tier statistics, bo1 and bo2 binary features are introduced
-*/
-public:
- const static int MAX_WORDS = 200;
- const static int MINIMUM_INIT = 1000;
- const static int MAXIMUM_INIT = -1000;
- const static int MAX_ARITY = 2;
- WordID kSOS;
- WordID kEOS;
- WordID kUNK;
- double alpha_oris; // 1st concentration parameter for orientation model
- double beta_oris; // 2nd concentration parameter for orientation model
- double alpha_orit; // 1st concentration parameter for orientation model
- double beta_orit; // 2nd concentration parameter for orientation model
- double alpha_doms; // idem as above but for dominance model
- double beta_doms;
- double alpha_domt; // idem as above but for dominance model
- double beta_domt;
-
- // ACCESS to alignment
- void set(int j,int i); // j is the source index, while i is the target index
- void reset(int j,int i); // idem as above
- inline bool at(int j, int i) { return _matrix[j][i]; };
- inline int getJ() {return _J;}; // max source of the current alignment
- inline int getI() {return _I;}; // max target of the current alignment
- inline void setI(int I) { _I = I; };
- inline void setJ(int J) { _J = J; };
- inline void setF(vector<WordID> f) { _f=f;};
- inline void setE(vector<WordID> e) { _e=e;};
- inline WordID getF(int id) { if (id<0) return TD::Convert("<s>"); if (id>=_f.size()) return TD::Convert("</s>"); return _f[id];};
- inline WordID getE(int id) { if (id<0) return TD::Convert("<s>"); if (id>=_e.size()) return TD::Convert("</s>"); return _e[id];};
- void clearAls(int prevJ=200, int prevI=200);
- int sourceOf(int i, int start = -1);
- int targetOf(int j, int start = -1);
- inline int minSSpan(int i) { return _sSpan[i][0];}
- inline int maxSSpan(int i) { return _sSpan[i][1];}
- inline int minTSpan(int j) { return _tSpan[j][0];}
- inline int maxTSpan(int j) { return _tSpan[j][1];}
- static inline int link(int s, int t) { return (s << 16) | t; }
- static inline int source(int st) {return st >> 16; }
- static inline int target(int st) {return st & 0xffff; }
- inline void setAlphaOris(double val) { alpha_oris=val; }
- inline void setAlphaOrit(double val) { alpha_orit=val; }
- inline void setAlphaDoms(double val) { alpha_doms=val; }
- inline void setAlphaDomt(double val) { alpha_domt=val; }
- inline void setBetaOris(double val) { beta_oris=val; }
- inline void setBetaOrit(double val) { beta_orit=val; }
- inline void setBetaDoms(double val) { beta_doms=val; }
- inline void setBetaDomt(double val) { beta_domt=val; }
- inline void setFreqCutoff(int val) { cout << _freq_cutoff << " to " << val << endl; _freq_cutoff=val; }
- string AsString();
- string AsStringSimple();
- int* SOS();
- int* EOS();
-
- // Model related function
- Alignment();
- // Given the current *rule* and its antecedents, construct an alignment space and mark the function word alignments
- // according *sfw* and *tfw*
- bool prepare(TRule& rule, const std::vector<const void*>& ant_contexts,
- const map<WordID,int>& sfw, const map<WordID,int>& tfw, const Lattice& sourcelattice, int spanstart, int spanend);
-
- // Compute orientation model score which parameters are stored in *table* and pass the values accordingly
- // will call Orientation(Source|Target) and ScoreOrientation(Source|Target)
- void computeOrientationSource(const CountTable& table, double *cost, double *bonus, double *bo1,
- double *bo1_bonus, double *bo2, double *bo2_bonus);
- void computeOrientationSourcePos(const CountTable& table, double *cost, double *bonus,
- double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2);
- void computeOrientationSourceGen(const CountTable& table, double *cost, double *bonus, double *bo1,
- double *bo1_bonus, double *bo2, double *bo2_bonus, const map<WordID,WordID>& tags);
- void computeOrientationSourceBackward(const CountTable& table, double *cost, double *bonus, double *bo1,
- double *bo1_bonus, double *bo2, double *bo2_bonus);
- void computeOrientationSourceBackwardPos(const CountTable& table, double *cost, double *bonus, double *bo1,
- double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2);
- void computeOrientationTarget(const CountTable& table, double *cost, double *bonus, double *bo1,
- double *bo1_bonus, double *bo2, double *bo2_bonus);
- void computeOrientationTargetBackward(const CountTable& table, double *cost, double *bonus, double *bo1,
- double *bo1_bonus, double *bo2, double *bo2_bonus);
- // Get the orientation value of a function word at a particular index *fw*
- // assign the value to either *oril* or *orir* accoring to *Lcompute* and *Rcompute*
- void OrientationSource(int fw, int*oril, int* orir, bool Lcompute=true, bool Rcompute=true);
- void OrientationSource(int fw0, int fw1, int*oril, int* orir, bool Lcompute=true, bool Rcompute=true);
- int OrientationSource(int* left, int* right);
- void OrientationTarget(int fw, int*oril, int* orir, bool Lcompute=true, bool Rcompute=true);
- void OrientationTarget(int fw0, int fw1, int*oril, int* orir, bool Lcompute=true, bool Rcompute=true);
-
- vector<int> OrientationSourceLeft4Sampler(int fw0, int fw1);
- vector<int> OrientationSourceLeft4Sampler(int fw);
- vector<int> OrientationSourceRight4Sampler(int fw0, int fw1);
- vector<int> OrientationSourceRight4Sampler(int fw);
- vector<int> OrientationTargetLeft4Sampler(int fw0, int fw1);
- vector<int> OrientationTargetLeft4Sampler(int fw);
- vector<int> OrientationTargetRight4Sampler(int fw0, int fw1);
- vector<int> OrientationTargetRight4Sampler(int fw);
-
- // Given an orientation value *ori*, estimate the score accoding to *cond1*, *cond2*
- // and assign the value accordingly according to *isBonus* and whether the first or the second tier estimation
- // is used or not
- void ScoreOrientationRight(const CountTable& table, int ori, WordID cond1, WordID cond2,
- bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
- double *bo2, double *bo2_bonus, double alpha1, double beta1);
- void ScoreOrientationLeft(const CountTable& table, int ori, WordID cond1, WordID cond,
- bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
- double *bo2, double *bo2_bonus, double alpha1, double beta1);
- double ScoreOrientationRight(const CountTable& table, int ori, WordID cond1, WordID cond2);
- double ScoreOrientationLeft(const CountTable& table, int ori, WordID cond1, WordID cond);
- void ScoreOrientationRightBackward(const CountTable& table, int ori, WordID cond1, WordID cond2,
- bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
- double *bo2, double *bo2_bonus, double alpha1, double beta1);
- void ScoreOrientationLeftBackward(const CountTable& table, int ori, WordID cond1, WordID cond,
- bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
- double *bo2, double *bo2_bonus, double alpha1, double beta1);
- double ScoreOrientationRightBackward(const CountTable& table, int ori, WordID cond1, WordID cond2);
- double ScoreOrientationLeftBackward(const CountTable& table, int ori, WordID cond1, WordID cond);
- void ScoreOrientation(const CountTable& table, int offset, int ori, WordID cond1, WordID cond2,
- bool isBonus, double *cost, double *bonus, double *bo1, double *bo1_bonus,
- double *bo2, double *bo2_bonus, double alpha1, double beta1);
- double ScoreOrientation(const CountTable& table, int offset, int ori, WordID cond1, WordID cond2);
-
- // idem as above except these are for dominance model
- void computeDominanceSource(const CountTable& table, WordID lfw, WordID rfw, double *cost, double *bonus,
- double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus);
- void computeDominanceSourcePos(const CountTable& table, WordID lfw, WordID rfw, double *cost, double *bonus,
- double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus, int maxfwidx, int maxdepth1, int maxdepth2);
- void computeDominanceTarget(const CountTable& table, WordID lfw, WordID rfw, double *cost, double *bonus,
- double *bo1, double *bo1_bonus, double *bo2, double *bo2_bonus);
- void computeBorderDominanceSource(const CountTable& table, double *cost, double *bonus,
- double *state_mono, double *state_nonmono,
- TRule &rule, const std::vector<const void*>& ant_contexts, const map<WordID,int>& sfw);
- int DominanceSource(int fw1, int fw2);
- int DominanceTarget(int fw1, int fw2);
- vector<int> DominanceSource4Sampler(int fw1, int fw2);
- vector<int> DominanceTarget4Sampler(int fw1, int fw2);
- void ScoreDominance(const CountTable& table, int dom, WordID s1, WordID s2, WordID t1, WordID t2,
- double *cost, double *bo1, double *bo2, bool isBonus, double alpha2, double beta2);
- double ScoreDominance(const CountTable& table, int dom, WordID s1, WordID s2, WordID t1, WordID t2);
-
- // Remove all function word alignments except those at the borders
- // May result in more than two function word alignments at each side, because this function
- // will continue keeping function word alignments until the first aligned word at each side
- void BorderingSFWsOnly();
- void BorderingTFWsOnly();
- void simplify(int *ret); // preparing the next state
- void simplify_nofw(int *ret); // preparing the next state when no function word appears
- // set the first part of the next state, which concerns with function word
- // fas, las, fat, lat is the (f)irst or (l)ast function word alignments either on the (s)ource or (t)arget
- // these parameters to anticipate cases where there are more than two function word alignments
- void FillFWIdxsState(int *state, int fas, int las, int fat, int lat);
-
- // Helper function to obtain the aligned words on the other side
- // WARNING!!! Only to be used if the als are in sync with either source or target sentences
- WordID F2EProjectionFromExternal(int idx, const vector<AlignmentPoint>& als, const string& delimiter=" ");
- WordID E2FProjectionFromExternal(int idx, const vector<AlignmentPoint>& als, const string& delimiter=" ");
- // WARNING!!! Only to be used in dwarf_main.cc
- // These two function words assume that the alignment contains phrase boundary
- // but the source and target sentences do not
- WordID F2EProjection(int idx, const string& delimiter=" ");
- WordID E2FProjection(int idx, const string& delimiter=" ");
- void SetCurrAlVector();
- int* blockSource(int fw1, int fw2);
- int* blockTarget(int fw1, int fw2);
- void ToArrayInt(vector<int>* arr);
- int* neighborLeft(int startidx, int endidx, bool* found);
- int* neighborRight(int startidx, int endidx, bool* found);
-private:
- // Hash to avoid redundancy
- unordered_map<vector<int>, int, boost::hash<vector<int> > > oris_hash;
- unordered_map<vector<int>, int, boost::hash<vector<int> > > orit_hash;
- unordered_map<vector<int>, int, boost::hash<vector<int> > > doms_hash;
- unordered_map<vector<int>, int, boost::hash<vector<int> > > domt_hash;
- unordered_map<vector<int>, vector<int>, boost::hash<vector<int> > > simplify_hash;
- unordered_map<vector<int>, vector<int>, boost::hash<vector<int> > > prepare_hash;
-
- int _J; // effective source length;
- int _I; // effective target length;
- bool _matrix[MAX_WORDS][MAX_WORDS]; // true if aligned
- short _sSpan[MAX_WORDS][2]; //the source span of a target index; 0->min, 1->max
- short _tSpan[MAX_WORDS][2]; //the target span of a source index; 0->min, 2->max
- int _freq_cutoff;
- int SourceFWRuleIdxs[40]; //the indexes of function words in the rule;
- // The following applies to all *FW*Idxs
- // *FW*Idxs[0] = size
- // *FW*Idxs[idx*3-2] = index in the alignment, where idx starts from 1 to size
- // *FW*Idxs[idx*3-1] = source WordID
- // *FW*Idxs[idx*3] = target WordID
- int SourceFWRuleAbsIdxs[40];
- int TargetFWRuleIdxs[40]; //the indexes of function words in the rule; zeroth element is the count
- int ** SourceFWAntsIdxs; //the indexes of function words in antecedents
- int ** SourceFWAntsAbsIdxs;
- int ** TargetFWAntsIdxs; //the indexes of function words in antecedents
- int SourceRuleIdxs[40]; //the indexes of SOURCE tokens (zeroth element is the number of source tokens)
- //>0 means terminal, -i means the i-th Xs
- int TargetRuleIdxs[40]; //the indexes of TARGET tokens (zeroth element is the number of target tokens)
- int ** SourceAntsIdxs; //the array of indexes of a particular antecedent's SOURCE tokens
- int ** TargetAntsIdxs; //the array of indexes of a particular antecedent's TARGET tokens
- int SourceFWIdxs[40];
- int SourceFWAbsIdxs[40];
- int TargetFWIdxs[40];
- // *sort* and *quickSort* are used to sort *FW*Idxs
- void sort(int* num);
- void quickSort(int arr[], int top, int bottom);
-
- // *block(Source|Target)* finds the minimum block that containts two indexes (fw1 and fw2)
- inline int least(int i1, int i2) { return (i1<i2)?i1:i2; }
- inline int most(int i1, int i2) { return (i1>i2)?i1:i2; }
- void simplifyBackward(vector<int *>*blocks, int* block, const vector<int>& danglings);
- // used in simplify to check whether an atomic block according to source function words is also atomic according
- // to target function words as well, otherwise break it
- // the resulting blocks are added into *blocks*
- int _Arity;
- std::vector<WordID> _f; // the source sentence of the **current** rule (may not consistent with the current alignment)
- std::vector<WordID> _e; // the target sentence of the **current** rule
- int RuleAl[40];
- int **AntsAl;
- int firstSourceAligned(int start);
- int firstTargetAligned(int start);
- int lastSourceAligned(int end);
- int lastTargetAligned(int end);
- int fas, las, fat, lat; // first aligned source, last aligned source, first aligned target, last aligned target
- bool MemberOf(int* FWIdxs, int pos1, int pos2); // whether FWIdxs contains pos1 and pos2 consecutively
- // Convert the alignment to vector form, will be used for hashing purposes
- vector<int> curr_al;
- int GetFWGlobalIdx(int idx, const Lattice& sourcelattice, vector<WordID>& sources, int spanstart, int spanend, const std::vector<const void*>& ant_contexts, const map<WordID,int>& sfw);
- int GetFirstFWIdx(int spanstart,int spanend, const Lattice& sourcelattice, const map<WordID,int>& sfw);
- int GetLastFWIdx(int spanstart,int spanend, const Lattice& sourcelattice, const map<WordID,int>& sfw);
- WordID generalize(WordID original, const map<WordID,WordID>& tags, bool pos=false);
-};
-
-#endif