summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2011-07-06 19:54:58 -0400
committerChris Dyer <cdyer@cs.cmu.edu>2011-07-06 19:54:58 -0400
commitf69c59716b161500011ea60892254c2701b9d63e (patch)
treeb4ab4a9877323150a3cb2a78016e2c13e622072a
parent3ccdb4dbdeed3704203c48fc5499bd06adb33fca (diff)
ngram count features
-rw-r--r--decoder/Makefile.am1
-rw-r--r--decoder/cdec_ff.cc2
-rw-r--r--decoder/ff_ngrams.cc319
-rw-r--r--decoder/ff_ngrams.h29
4 files changed, 351 insertions, 0 deletions
diff --git a/decoder/Makefile.am b/decoder/Makefile.am
index 244da2de..d884c431 100644
--- a/decoder/Makefile.am
+++ b/decoder/Makefile.am
@@ -65,6 +65,7 @@ libcdec_a_SOURCES = \
ff_charset.cc \
ff_lm.cc \
ff_klm.cc \
+ ff_ngrams.cc \
ff_spans.cc \
ff_ruleshape.cc \
ff_wordalign.cc \
diff --git a/decoder/cdec_ff.cc b/decoder/cdec_ff.cc
index 31f88a4f..3451c9fb 100644
--- a/decoder/cdec_ff.cc
+++ b/decoder/cdec_ff.cc
@@ -4,6 +4,7 @@
#include "ff_spans.h"
#include "ff_lm.h"
#include "ff_klm.h"
+#include "ff_ngrams.h"
#include "ff_csplit.h"
#include "ff_wordalign.h"
#include "ff_tagger.h"
@@ -51,6 +52,7 @@ void register_feature_functions() {
ff_registry.Register("RandLM", new FFFactory<LanguageModelRandLM>);
#endif
ff_registry.Register("SpanFeatures", new FFFactory<SpanFeatures>());
+ ff_registry.Register("NgramFeatures", new FFFactory<NgramDetector>());
ff_registry.Register("RuleNgramFeatures", new FFFactory<RuleNgramFeatures>());
ff_registry.Register("CMR2008ReorderingFeatures", new FFFactory<CMR2008ReorderingFeatures>());
ff_registry.Register("KLanguageModel", new FFFactory<KLanguageModel<lm::ngram::ProbingModel> >());
diff --git a/decoder/ff_ngrams.cc b/decoder/ff_ngrams.cc
new file mode 100644
index 00000000..54b394ae
--- /dev/null
+++ b/decoder/ff_ngrams.cc
@@ -0,0 +1,319 @@
+#include "ff_ngrams.h"
+
+#include <cstring>
+#include <iostream>
+
+#include <boost/scoped_ptr.hpp>
+
+#include "filelib.h"
+#include "stringlib.h"
+#include "hg.h"
+#include "tdict.h"
+
+using namespace std;
+
+static const unsigned char HAS_FULL_CONTEXT = 1;
+static const unsigned char HAS_EOS_ON_RIGHT = 2;
+static const unsigned char MASK = 7;
+
+namespace {
+template <unsigned MAX_ORDER = 5>
+struct State {
+ explicit State() {
+ memset(state, 0, sizeof(state));
+ }
+ explicit State(int order) {
+ memset(state, 0, (order - 1) * sizeof(WordID));
+ }
+ State<MAX_ORDER>(char order, const WordID* mem) {
+ memcpy(state, mem, (order - 1) * sizeof(WordID));
+ }
+ State(const State<MAX_ORDER>& other) {
+ memcpy(state, other.state, sizeof(state));
+ }
+ const State& operator=(const State<MAX_ORDER>& other) {
+ memcpy(state, other.state, sizeof(state));
+ }
+ explicit State(const State<MAX_ORDER>& other, unsigned order, WordID extend) {
+ char om1 = order - 1;
+ assert(om1 > 0);
+ for (char i = 1; i < om1; ++i) state[i - 1]= other.state[i];
+ state[om1 - 1] = extend;
+ }
+ const WordID& operator[](size_t i) const { return state[i]; }
+ WordID& operator[](size_t i) { return state[i]; }
+ WordID state[MAX_ORDER];
+};
+}
+
+class NgramDetectorImpl {
+
+ // returns the number of unscored words at the left edge of a span
+ inline int UnscoredSize(const void* state) const {
+ return *(static_cast<const char*>(state) + unscored_size_offset_);
+ }
+
+ inline void SetUnscoredSize(int size, void* state) const {
+ *(static_cast<char*>(state) + unscored_size_offset_) = size;
+ }
+
+ inline State<5> RemnantLMState(const void* cstate) const {
+ return State<5>(order_, static_cast<const WordID*>(cstate));
+ }
+
+ inline const State<5> BeginSentenceState() const {
+ State<5> state(order_);
+ state.state[0] = kSOS_;
+ return state;
+ }
+
+ inline void SetRemnantLMState(const State<5>& lmstate, void* state) const {
+ // if we were clever, we could use the memory pointed to by state to do all
+ // the work, avoiding this copy
+ memcpy(state, lmstate.state, (order_-1) * sizeof(WordID));
+ }
+
+ WordID IthUnscoredWord(int i, const void* state) const {
+ const WordID* const mem = reinterpret_cast<const WordID*>(static_cast<const char*>(state) + unscored_words_offset_);
+ return mem[i];
+ }
+
+ void SetIthUnscoredWord(int i, const WordID index, void *state) const {
+ WordID* mem = reinterpret_cast<WordID*>(static_cast<char*>(state) + unscored_words_offset_);
+ mem[i] = index;
+ }
+
+ inline bool GetFlag(const void *state, unsigned char flag) const {
+ return (*(static_cast<const char*>(state) + is_complete_offset_) & flag);
+ }
+
+ inline void SetFlag(bool on, unsigned char flag, void *state) const {
+ if (on) {
+ *(static_cast<char*>(state) + is_complete_offset_) |= flag;
+ } else {
+ *(static_cast<char*>(state) + is_complete_offset_) &= (MASK ^ flag);
+ }
+ }
+
+ inline bool HasFullContext(const void *state) const {
+ return GetFlag(state, HAS_FULL_CONTEXT);
+ }
+
+ inline void SetHasFullContext(bool flag, void *state) const {
+ SetFlag(flag, HAS_FULL_CONTEXT, state);
+ }
+
+ void FireFeatures(const State<5>& state, const WordID cur, SparseVector<double>* feats) {
+ assert(order_ == 2);
+ if (cur >= unimap_.size())
+ unimap_.resize(cur + 10, 0);
+ int& uf = unimap_[cur];
+ if (!uf) {
+ ostringstream os;
+ os << "U:" << TD::Convert(cur);
+ uf = FD::Convert(os.str());
+ }
+ feats->set_value(uf, 1.0);
+ if (state.state[0]) {
+ if (state.state[0] >= bimap_.size())
+ bimap_.resize(state.state[0] + 10);
+ int& bf = bimap_[state.state[0]][cur];
+ if (!bf) {
+ ostringstream os;
+ os << "B:" << TD::Convert(state[0]) << '_' << TD::Convert(cur);
+ bf = FD::Convert(os.str());
+ }
+ feats->set_value(bf, 1.0);
+ }
+ }
+
+ public:
+ void LookupWords(const TRule& rule, const vector<const void*>& ant_states, SparseVector<double>* feats, SparseVector<double>* est_feats, void* remnant) {
+ double sum = 0.0;
+ double est_sum = 0.0;
+ int num_scored = 0;
+ int num_estimated = 0;
+ bool saw_eos = false;
+ bool has_some_history = false;
+ State<5> state;
+ const vector<WordID>& e = rule.e();
+ bool context_complete = false;
+ for (int j = 0; j < e.size(); ++j) {
+ if (e[j] < 1) { // handle non-terminal substitution
+ const void* astate = (ant_states[-e[j]]);
+ int unscored_ant_len = UnscoredSize(astate);
+ for (int k = 0; k < unscored_ant_len; ++k) {
+ const WordID cur_word = IthUnscoredWord(k, astate);
+ const bool is_oov = (cur_word == 0);
+ SparseVector<double> p;
+ if (cur_word == kSOS_) {
+ state = BeginSentenceState();
+ if (has_some_history) { // this is immediately fully scored, and bad
+ p.set_value(FD::Convert("Malformed"), 1.0);
+ context_complete = true;
+ } else { // this might be a real <s>
+ num_scored = max(0, order_ - 2);
+ }
+ } else {
+ FireFeatures(state, cur_word, &p);
+ const State<5> scopy = State<5>(state, order_, cur_word);
+ state = scopy;
+ if (saw_eos) { p.set_value(FD::Convert("Malformed"), 1.0); }
+ saw_eos = (cur_word == kEOS_);
+ }
+ has_some_history = true;
+ ++num_scored;
+ if (!context_complete) {
+ if (num_scored >= order_) context_complete = true;
+ }
+ if (context_complete) {
+ (*feats) += p;
+ } else {
+ if (remnant)
+ SetIthUnscoredWord(num_estimated, cur_word, remnant);
+ ++num_estimated;
+ (*est_feats) += p;
+ }
+ }
+ saw_eos = GetFlag(astate, HAS_EOS_ON_RIGHT);
+ if (HasFullContext(astate)) { // this is equivalent to the "star" in Chiang 2007
+ state = RemnantLMState(astate);
+ context_complete = true;
+ }
+ } else { // handle terminal
+ const WordID cur_word = e[j];
+ SparseVector<double> p;
+ if (cur_word == kSOS_) {
+ state = BeginSentenceState();
+ if (has_some_history) { // this is immediately fully scored, and bad
+ p.set_value(FD::Convert("Malformed"), -100);
+ context_complete = true;
+ } else { // this might be a real <s>
+ num_scored = max(0, order_ - 2);
+ }
+ } else {
+ FireFeatures(state, cur_word, &p);
+ const State<5> scopy = State<5>(state, order_, cur_word);
+ state = scopy;
+ if (saw_eos) { p.set_value(FD::Convert("Malformed"), 1.0); }
+ saw_eos = (cur_word == kEOS_);
+ }
+ has_some_history = true;
+ ++num_scored;
+ if (!context_complete) {
+ if (num_scored >= order_) context_complete = true;
+ }
+ if (context_complete) {
+ (*feats) += p;
+ } else {
+ if (remnant)
+ SetIthUnscoredWord(num_estimated, cur_word, remnant);
+ ++num_estimated;
+ (*est_feats) += p;
+ }
+ }
+ }
+ if (remnant) {
+ SetFlag(saw_eos, HAS_EOS_ON_RIGHT, remnant);
+ SetRemnantLMState(state, remnant);
+ SetUnscoredSize(num_estimated, remnant);
+ SetHasFullContext(context_complete || (num_scored >= order_), remnant);
+ }
+ }
+
+ // this assumes no target words on final unary -> goal rule. is that ok?
+ // for <s> (n-1 left words) and (n-1 right words) </s>
+ void FinalTraversal(const void* state, SparseVector<double>* feats) {
+ if (add_sos_eos_) { // rules do not produce <s> </s>, so do it here
+ SetRemnantLMState(BeginSentenceState(), dummy_state_);
+ SetHasFullContext(1, dummy_state_);
+ SetUnscoredSize(0, dummy_state_);
+ dummy_ants_[1] = state;
+ LookupWords(*dummy_rule_, dummy_ants_, feats, NULL, NULL);
+ } else { // rules DO produce <s> ... </s>
+#if 0
+ double p = 0;
+ if (!GetFlag(state, HAS_EOS_ON_RIGHT)) { p -= 100; }
+ if (UnscoredSize(state) > 0) { // are there unscored words
+ if (kSOS_ != IthUnscoredWord(0, state)) {
+ p -= 100 * UnscoredSize(state);
+ }
+ }
+ return p;
+#endif
+ }
+ }
+
+ public:
+ explicit NgramDetectorImpl(bool explicit_markers) :
+ kCDEC_UNK(TD::Convert("<unk>")) ,
+ add_sos_eos_(!explicit_markers) {
+ order_ = 2;
+ state_size_ = (order_ - 1) * sizeof(WordID) + 2 + (order_ - 1) * sizeof(WordID);
+ unscored_size_offset_ = (order_ - 1) * sizeof(WordID);
+ is_complete_offset_ = unscored_size_offset_ + 1;
+ unscored_words_offset_ = is_complete_offset_ + 1;
+
+ // special handling of beginning / ending sentence markers
+ dummy_state_ = new char[state_size_];
+ memset(dummy_state_, 0, state_size_);
+ dummy_ants_.push_back(dummy_state_);
+ dummy_ants_.push_back(NULL);
+ dummy_rule_.reset(new TRule("[DUMMY] ||| [BOS] [DUMMY] ||| [1] [2] </s> ||| X=0"));
+ kSOS_ = TD::Convert("<s>");
+ kEOS_ = TD::Convert("</s>");
+ }
+
+ ~NgramDetectorImpl() {
+ delete[] dummy_state_;
+ }
+
+ int ReserveStateSize() const { return state_size_; }
+
+ private:
+ const WordID kCDEC_UNK;
+ WordID kSOS_; // <s> - requires special handling.
+ WordID kEOS_; // </s>
+ const bool add_sos_eos_; // flag indicating whether the hypergraph produces <s> and </s>
+ // if this is true, FinalTransitionFeatures will "add" <s> and </s>
+ // if false, FinalTransitionFeatures will score anything with the
+ // markers in the right place (i.e., the beginning and end of
+ // the sentence) with 0, and anything else with -100
+
+ int order_;
+ int state_size_;
+ int unscored_size_offset_;
+ int is_complete_offset_;
+ int unscored_words_offset_;
+ char* dummy_state_;
+ vector<const void*> dummy_ants_;
+ TRulePtr dummy_rule_;
+ mutable std::vector<int> unimap_; // [left][right]
+ mutable std::vector<std::map<WordID, int> > bimap_; // [left][right]
+};
+
+NgramDetector::NgramDetector(const string& param) {
+ string filename, mapfile, featname;
+ bool explicit_markers = (param == "-x");
+ pimpl_ = new NgramDetectorImpl(explicit_markers);
+ SetStateSize(pimpl_->ReserveStateSize());
+}
+
+NgramDetector::~NgramDetector() {
+ delete pimpl_;
+}
+
+void NgramDetector::TraversalFeaturesImpl(const SentenceMetadata& /* smeta */,
+ const Hypergraph::Edge& edge,
+ const vector<const void*>& ant_states,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* state) const {
+ pimpl_->LookupWords(*edge.rule_, ant_states, features, estimated_features, state);
+}
+
+void NgramDetector::FinalTraversalFeatures(const void* ant_state,
+ SparseVector<double>* features) const {
+ pimpl_->FinalTraversal(ant_state, features);
+}
+
diff --git a/decoder/ff_ngrams.h b/decoder/ff_ngrams.h
new file mode 100644
index 00000000..82f61b33
--- /dev/null
+++ b/decoder/ff_ngrams.h
@@ -0,0 +1,29 @@
+#ifndef _NGRAMS_FF_H_
+#define _NGRAMS_FF_H_
+
+#include <vector>
+#include <map>
+#include <string>
+
+#include "ff.h"
+
+struct NgramDetectorImpl;
+class NgramDetector : public FeatureFunction {
+ public:
+ // param = "filename.lm [-o n]"
+ NgramDetector(const std::string& param);
+ ~NgramDetector();
+ virtual void FinalTraversalFeatures(const void* context,
+ SparseVector<double>* features) const;
+ protected:
+ virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta,
+ const Hypergraph::Edge& edge,
+ const std::vector<const void*>& ant_contexts,
+ SparseVector<double>* features,
+ SparseVector<double>* estimated_features,
+ void* out_context) const;
+ private:
+ NgramDetectorImpl* pimpl_;
+};
+
+#endif