summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorWu, Ke <wuke@cs.umd.edu>2014-12-17 15:41:32 -0500
committerWu, Ke <wuke@cs.umd.edu>2014-12-17 15:41:32 -0500
commitf2d50c333d0dde8a5ef211bc31b4978a3d8911cf (patch)
tree524139e2845f1a507af6284124f1ac5483e0931e
parent008317586752d71d1f30dd8fea1de7319ffc29ea (diff)
Move training routine out of ff_const_reorder_common.h
-rw-r--r--decoder/ff_const_reorder_common.h93
-rw-r--r--training/const_reorder/Makefile.am8
-rw-r--r--training/const_reorder/argument_reorder_model.cc6
-rw-r--r--training/const_reorder/constituent_reorder_model.cc6
-rw-r--r--training/const_reorder/trainer.cc67
-rw-r--r--training/const_reorder/trainer.h12
6 files changed, 91 insertions, 101 deletions
diff --git a/decoder/ff_const_reorder_common.h b/decoder/ff_const_reorder_common.h
index 7c111de3..b124ce47 100644
--- a/decoder/ff_const_reorder_common.h
+++ b/decoder/ff_const_reorder_common.h
@@ -1091,99 +1091,6 @@ struct Tsuruoka_Maxent {
if (m_pModel != NULL) delete m_pModel;
}
- void fnTrain(const char* pszInstanceFName, const char* pszAlgorithm,
- const char* pszModelFName, int /*iNumIteration*/) {
- assert(strcmp(pszAlgorithm, "l1") == 0 || strcmp(pszAlgorithm, "l2") == 0 ||
- strcmp(pszAlgorithm, "sgd") == 0 ||
- strcmp(pszAlgorithm, "SGD") == 0);
- FILE* fpIn = fopen(pszInstanceFName, "r");
-
- ME_Model* pModel = new ME_Model();
-
- char* pszLine = new char[100001];
- int iNumInstances = 0;
- int iLen;
- while (!feof(fpIn)) {
- pszLine[0] = '\0';
- fgets(pszLine, 20000, fpIn);
- if (strlen(pszLine) == 0) {
- continue;
- }
-
- iLen = strlen(pszLine);
- while (iLen > 0 && pszLine[iLen - 1] > 0 && pszLine[iLen - 1] < 33) {
- pszLine[iLen - 1] = '\0';
- iLen--;
- }
-
- iNumInstances++;
-
- ME_Sample* pmes = new ME_Sample();
-
- char* p = strrchr(pszLine, ' ');
- assert(p != NULL);
- p[0] = '\0';
- p++;
- std::vector<std::string> vecContext;
- SplitOnWhitespace(std::string(pszLine), &vecContext);
-
- pmes->label = std::string(p);
- for (size_t i = 0; i < vecContext.size(); i++)
- pmes->add_feature(vecContext[i]);
- pModel->add_training_sample((*pmes));
- if (iNumInstances % 100000 == 0)
- fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
- delete pmes;
- }
- fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
- fclose(fpIn);
-
- if (strcmp(pszAlgorithm, "l1") == 0)
- pModel->use_l1_regularizer(1.0);
- else if (strcmp(pszAlgorithm, "l2") == 0)
- pModel->use_l2_regularizer(1.0);
- else
- pModel->use_SGD();
-
- pModel->train();
- pModel->save_to_file(pszModelFName);
-
- delete pModel;
- fprintf(stdout, "......Finished Training\n");
- fprintf(stdout, "......Model saved as %s\n", pszModelFName);
- delete[] pszLine;
- }
-
- double fnEval(const char* pszContext, const char* pszOutcome) const {
- std::vector<std::string> vecContext;
- ME_Sample* pmes = new ME_Sample();
- SplitOnWhitespace(std::string(pszContext), &vecContext);
-
- for (size_t i = 0; i < vecContext.size(); i++)
- pmes->add_feature(vecContext[i]);
- std::vector<double> vecProb = m_pModel->classify(*pmes);
- delete pmes;
- int iLableID = m_pModel->get_class_id(pszOutcome);
- return vecProb[iLableID];
- }
- void fnEval(const char* pszContext,
- std::vector<std::pair<std::string, double> >& vecOutput) const {
- std::vector<std::string> vecContext;
- ME_Sample* pmes = new ME_Sample();
- SplitOnWhitespace(std::string(pszContext), &vecContext);
-
- vecOutput.clear();
-
- for (size_t i = 0; i < vecContext.size(); i++)
- pmes->add_feature(vecContext[i]);
- std::vector<double> vecProb = m_pModel->classify(*pmes);
-
- for (size_t i = 0; i < vecProb.size(); i++) {
- std::string label = m_pModel->get_class_label(i);
- vecOutput.push_back(make_pair(label, vecProb[i]));
- }
- delete pmes;
- }
void fnEval(const char* pszContext, std::vector<double>& vecOutput) const {
std::vector<std::string> vecContext;
ME_Sample* pmes = new ME_Sample();
diff --git a/training/const_reorder/Makefile.am b/training/const_reorder/Makefile.am
index 2e81e588..367ac904 100644
--- a/training/const_reorder/Makefile.am
+++ b/training/const_reorder/Makefile.am
@@ -1,8 +1,12 @@
+noinst_LIBRARIES = libtrainer.a
+
+libtrainer_a_SOURCES = trainer.h trainer.cc
+
bin_PROGRAMS = const_reorder_model_trainer argument_reorder_model_trainer
AM_CPPFLAGS = -I$(top_srcdir) -I$(top_srcdir)/utils -I$(top_srcdir)/decoder
const_reorder_model_trainer_SOURCES = constituent_reorder_model.cc
-const_reorder_model_trainer_LDADD = ../../utils/libutils.a
+const_reorder_model_trainer_LDADD = ../../utils/libutils.a libtrainer.a
argument_reorder_model_trainer_SOURCES = argument_reorder_model.cc
-argument_reorder_model_trainer_LDADD = ../../utils/libutils.a
+argument_reorder_model_trainer_LDADD = ../../utils/libutils.a libtrainer.a
diff --git a/training/const_reorder/argument_reorder_model.cc b/training/const_reorder/argument_reorder_model.cc
index 54402436..87f2ce2f 100644
--- a/training/const_reorder/argument_reorder_model.cc
+++ b/training/const_reorder/argument_reorder_model.cc
@@ -14,7 +14,7 @@
#include "utils/filelib.h"
-#include "decoder/ff_const_reorder_common.h"
+#include "trainer.h"
using namespace std;
using namespace const_reorder;
@@ -93,8 +93,8 @@ struct SArgumentReorderTrainer {
strcpy(pszNewInstanceFName, pszInstanceFname);
}
- Tsuruoka_Maxent* pMaxent = new Tsuruoka_Maxent(NULL);
- pMaxent->fnTrain(pszNewInstanceFName, "l1", pszModelFname, 300);
+ Tsuruoka_Maxent_Trainer* pMaxent = new Tsuruoka_Maxent_Trainer;
+ pMaxent->fnTrain(pszNewInstanceFName, "l1", pszModelFname);
delete pMaxent;
if (strcmp(pszNewInstanceFName, pszInstanceFname) != 0) {
diff --git a/training/const_reorder/constituent_reorder_model.cc b/training/const_reorder/constituent_reorder_model.cc
index 6bec3f0b..d3ad0f2b 100644
--- a/training/const_reorder/constituent_reorder_model.cc
+++ b/training/const_reorder/constituent_reorder_model.cc
@@ -12,7 +12,7 @@
#include "utils/filelib.h"
-#include "decoder/ff_const_reorder_common.h"
+#include "trainer.h"
using namespace std;
using namespace const_reorder;
@@ -104,8 +104,8 @@ struct SConstReorderTrainer {
pZhangleMaxent->fnTrain(pszInstanceFname, "lbfgs", pszModelFname, 100, 2.0);
delete pZhangleMaxent;*/
- Tsuruoka_Maxent* pMaxent = new Tsuruoka_Maxent(NULL);
- pMaxent->fnTrain(pszNewInstanceFName, "l1", pszModelFname, 300);
+ Tsuruoka_Maxent_Trainer* pMaxent = new Tsuruoka_Maxent_Trainer;
+ pMaxent->fnTrain(pszNewInstanceFName, "l1", pszModelFname);
delete pMaxent;
if (strcmp(pszNewInstanceFName, pszInstanceFname) != 0) {
diff --git a/training/const_reorder/trainer.cc b/training/const_reorder/trainer.cc
new file mode 100644
index 00000000..e22a8a66
--- /dev/null
+++ b/training/const_reorder/trainer.cc
@@ -0,0 +1,67 @@
+#include "trainer.h"
+
+Tsuruoka_Maxent_Trainer::Tsuruoka_Maxent_Trainer()
+ : const_reorder::Tsuruoka_Maxent(NULL) {}
+
+void Tsuruoka_Maxent_Trainer::fnTrain(const char* pszInstanceFName,
+ const char* pszAlgorithm,
+ const char* pszModelFName) {
+ assert(strcmp(pszAlgorithm, "l1") == 0 || strcmp(pszAlgorithm, "l2") == 0 ||
+ strcmp(pszAlgorithm, "sgd") == 0 || strcmp(pszAlgorithm, "SGD") == 0);
+ FILE* fpIn = fopen(pszInstanceFName, "r");
+
+ ME_Model* pModel = new ME_Model();
+
+ char* pszLine = new char[100001];
+ int iNumInstances = 0;
+ int iLen;
+ while (!feof(fpIn)) {
+ pszLine[0] = '\0';
+ fgets(pszLine, 20000, fpIn);
+ if (strlen(pszLine) == 0) {
+ continue;
+ }
+
+ iLen = strlen(pszLine);
+ while (iLen > 0 && pszLine[iLen - 1] > 0 && pszLine[iLen - 1] < 33) {
+ pszLine[iLen - 1] = '\0';
+ iLen--;
+ }
+
+ iNumInstances++;
+
+ ME_Sample* pmes = new ME_Sample();
+
+ char* p = strrchr(pszLine, ' ');
+ assert(p != NULL);
+ p[0] = '\0';
+ p++;
+ std::vector<std::string> vecContext;
+ SplitOnWhitespace(std::string(pszLine), &vecContext);
+
+ pmes->label = std::string(p);
+ for (size_t i = 0; i < vecContext.size(); i++)
+ pmes->add_feature(vecContext[i]);
+ pModel->add_training_sample((*pmes));
+ if (iNumInstances % 100000 == 0)
+ fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
+ delete pmes;
+ }
+ fprintf(stdout, "......Reading #Instances: %1d\n", iNumInstances);
+ fclose(fpIn);
+
+ if (strcmp(pszAlgorithm, "l1") == 0)
+ pModel->use_l1_regularizer(1.0);
+ else if (strcmp(pszAlgorithm, "l2") == 0)
+ pModel->use_l2_regularizer(1.0);
+ else
+ pModel->use_SGD();
+
+ pModel->train();
+ pModel->save_to_file(pszModelFName);
+
+ delete pModel;
+ fprintf(stdout, "......Finished Training\n");
+ fprintf(stdout, "......Model saved as %s\n", pszModelFName);
+ delete[] pszLine;
+}
diff --git a/training/const_reorder/trainer.h b/training/const_reorder/trainer.h
new file mode 100644
index 00000000..e574a536
--- /dev/null
+++ b/training/const_reorder/trainer.h
@@ -0,0 +1,12 @@
+#ifndef TRAINING_CONST_REORDER_TRAINER_H_
+#define TRAINING_CONST_REORDER_TRAINER_H_
+
+#include "decoder/ff_const_reorder_common.h"
+
+struct Tsuruoka_Maxent_Trainer : const_reorder::Tsuruoka_Maxent {
+ Tsuruoka_Maxent_Trainer();
+ void fnTrain(const char* pszInstanceFName, const char* pszAlgorithm,
+ const char* pszModelFName);
+};
+
+#endif // TRAINING_CONST_REORDER_TRAINER_H_