summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2011-12-29 21:10:24 -0500
committerChris Dyer <cdyer@cs.cmu.edu>2011-12-29 21:10:24 -0500
commitdeaec2e8837bcd1bace1527281eef442a1c1030b (patch)
tree73dd86c6f0eeb69501c2c0edc0e09e3b56c9f222
parent46d833dc92d99f8cbcf5c45e4624ffaca954570b (diff)
forgotten
-rw-r--r--gi/pf/condnaive.cc298
1 files changed, 298 insertions, 0 deletions
diff --git a/gi/pf/condnaive.cc b/gi/pf/condnaive.cc
new file mode 100644
index 00000000..52ddbbfe
--- /dev/null
+++ b/gi/pf/condnaive.cc
@@ -0,0 +1,298 @@
+#include <iostream>
+#include <tr1/memory>
+#include <queue>
+
+#include <boost/multi_array.hpp>
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "base_measures.h"
+#include "monotonic_pseg.h"
+#include "conditional_pseg.h"
+#include "trule.h"
+#include "tdict.h"
+#include "filelib.h"
+#include "dict.h"
+#include "sampler.h"
+#include "ccrp_nt.h"
+#include "corpus.h"
+
+using namespace std;
+using namespace std::tr1;
+namespace po = boost::program_options;
+
+static unsigned kMAX_SRC_PHRASE;
+static unsigned kMAX_TRG_PHRASE;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
+ ("input,i",po::value<string>(),"Read parallel data from")
+ ("max_src_phrase",po::value<unsigned>()->default_value(4),"Maximum length of source language phrases")
+ ("max_trg_phrase",po::value<unsigned>()->default_value(4),"Maximum length of target language phrases")
+ ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
+ ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
+ ("random_seed,S",po::value<uint32_t>(), "Random seed");
+ po::options_description clo("Command line options");
+ clo.add_options()
+ ("config", po::value<string>(), "Configuration file")
+ ("help,h", "Print this help message and exit");
+ po::options_description dconfig_options, dcmdline_options;
+ dconfig_options.add(opts);
+ dcmdline_options.add(opts).add(clo);
+
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("config")) {
+ ifstream config((*conf)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(config, dconfig_options), *conf);
+ }
+ po::notify(*conf);
+
+ if (conf->count("help") || (conf->count("input") == 0)) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+shared_ptr<MT19937> prng;
+
+struct ModelAndData {
+ explicit ModelAndData(ConditionalParallelSegementationModel<PhraseConditionalBase>& m, const vector<vector<int> >& ce, const vector<vector<int> >& cf, const set<int>& ve, const set<int>& vf) :
+ model(m),
+ rng(&*prng),
+ corpuse(ce),
+ corpusf(cf),
+ vocabe(ve),
+ vocabf(vf),
+ mh_samples(),
+ mh_rejects(),
+ kX(-TD::Convert("X")),
+ derivations(corpuse.size()) {}
+
+ void ResampleHyperparameters() {
+ }
+
+ void InstantiateRule(const pair<short,short>& from,
+ const pair<short,short>& to,
+ const vector<int>& sentf,
+ const vector<int>& sente,
+ TRule* rule) const {
+ rule->f_.clear();
+ rule->e_.clear();
+ rule->lhs_ = kX;
+ for (short i = from.first; i < to.first; ++i)
+ rule->f_.push_back(sentf[i]);
+ for (short i = from.second; i < to.second; ++i)
+ rule->e_.push_back(sente[i]);
+ }
+
+ void DecrementDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
+ if (d.size() < 2) return;
+ TRule x;
+ for (int i = 1; i < d.size(); ++i) {
+ InstantiateRule(d[i], d[i-1], sentf, sente, &x);
+ model.DecrementRule(x);
+ model.DecrementAlign(x.f_.size());
+ }
+ }
+
+ void PrintDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
+ if (d.size() < 2) return;
+ TRule x;
+ for (int i = 1; i < d.size(); ++i) {
+ InstantiateRule(d[i], d[i-1], sentf, sente, &x);
+ cerr << i << '/' << (d.size() - 1) << ": " << x << endl;
+ }
+ }
+
+ void IncrementDerivation(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) {
+ if (d.size() < 2) return;
+ TRule x;
+ for (int i = 1; i < d.size(); ++i) {
+ InstantiateRule(d[i], d[i-1], sentf, sente, &x);
+ model.IncrementRule(x);
+ model.IncrementAlign(x.f_.size());
+ }
+ }
+
+ prob_t Likelihood() const {
+ return model.Likelihood();
+ }
+
+ prob_t DerivationProposalProbability(const vector<pair<short,short> >& d, const vector<int>& sentf, const vector<int>& sente) const {
+ prob_t p = prob_t::One();
+ TRule x;
+ for (int i = 1; i < d.size(); ++i) {
+ InstantiateRule(d[i], d[i-1], sentf, sente, &x);
+ p *= model.RuleProbability(x);
+ p *= model.AlignProbability(x.f_.size());
+ }
+ return p;
+ }
+
+ void Sample();
+
+ ConditionalParallelSegementationModel<PhraseConditionalBase>& model;
+ MT19937* rng;
+ const vector<vector<int> >& corpuse, corpusf;
+ const set<int>& vocabe, vocabf;
+ unsigned mh_samples, mh_rejects;
+ const int kX;
+ vector<vector<pair<short, short> > > derivations;
+};
+
+void ModelAndData::Sample() {
+ unsigned MAXK = kMAX_SRC_PHRASE;
+ unsigned MAXL = kMAX_TRG_PHRASE;
+ TRule x;
+ x.lhs_ = -TD::Convert("X");
+
+ for (int samples = 0; samples < 1000; ++samples) {
+ if (samples % 1 == 0 && samples > 0) {
+ //ResampleHyperparameters();
+ cerr << " [" << samples << " LLH=" << log(Likelihood()) << " MH=" << ((double)mh_rejects / mh_samples) << "]\n";
+ for (int i = 0; i < 10; ++i) {
+ cerr << "SENTENCE: " << TD::GetString(corpusf[i]) << " ||| " << TD::GetString(corpuse[i]) << endl;
+ PrintDerivation(derivations[i], corpusf[i], corpuse[i]);
+ }
+ static TRule xx("[X] ||| w n ||| s h ||| X=0");
+ const CCRP_NoTable<TRule>& dcrp = model.tmodel.r.find(xx.f_)->second;
+ for (CCRP_NoTable<TRule>::const_iterator it = dcrp.begin(); it != dcrp.end(); ++it) {
+ cerr << "\t" << it->second << "\t" << it->first << endl;
+ }
+ }
+ cerr << '.' << flush;
+ for (int s = 0; s < corpuse.size(); ++s) {
+ const vector<int>& sentf = corpusf[s];
+ const vector<int>& sente = corpuse[s];
+// cerr << " CUSTOMERS: " << rules.num_customers() << endl;
+// cerr << "SENTENCE: " << TD::GetString(sentf) << " ||| " << TD::GetString(sente) << endl;
+
+ vector<pair<short, short> >& deriv = derivations[s];
+ const prob_t p_cur = Likelihood();
+ DecrementDerivation(deriv, sentf, sente);
+
+ boost::multi_array<prob_t, 2> a(boost::extents[sentf.size() + 1][sente.size() + 1]);
+ boost::multi_array<prob_t, 4> trans(boost::extents[sentf.size() + 1][sente.size() + 1][MAXK][MAXL]);
+ a[0][0] = prob_t::One();
+ for (int i = 0; i < sentf.size(); ++i) {
+ for (int j = 0; j < sente.size(); ++j) {
+ const prob_t src_a = a[i][j];
+ x.f_.clear();
+ for (int k = 1; k <= MAXK; ++k) {
+ if (i + k > sentf.size()) break;
+ x.f_.push_back(sentf[i + k - 1]);
+ x.e_.clear();
+ const prob_t p_span = model.AlignProbability(k); // prob of consuming this much source
+ for (int l = 1; l <= MAXL; ++l) {
+ if (j + l > sente.size()) break;
+ x.e_.push_back(sente[j + l - 1]);
+ trans[i][j][k - 1][l - 1] = model.RuleProbability(x) * p_span;
+ a[i + k][j + l] += src_a * trans[i][j][k - 1][l - 1];
+ }
+ }
+ }
+ }
+// cerr << "Inside: " << log(a[sentf.size()][sente.size()]) << endl;
+ const prob_t q_cur = DerivationProposalProbability(deriv, sentf, sente);
+
+ vector<pair<short,short> > newderiv;
+ int cur_i = sentf.size();
+ int cur_j = sente.size();
+ while(cur_i > 0 && cur_j > 0) {
+ newderiv.push_back(pair<short,short>(cur_i, cur_j));
+// cerr << "NODE: (" << cur_i << "," << cur_j << ")\n";
+ SampleSet<prob_t> ss;
+ vector<pair<short,short> > nexts;
+ for (int k = 1; k <= MAXK; ++k) {
+ const int hyp_i = cur_i - k;
+ if (hyp_i < 0) break;
+ for (int l = 1; l <= MAXL; ++l) {
+ const int hyp_j = cur_j - l;
+ if (hyp_j < 0) break;
+ const prob_t& inside = a[hyp_i][hyp_j];
+ if (inside == prob_t::Zero()) continue;
+ const prob_t& transp = trans[hyp_i][hyp_j][k - 1][l - 1];
+ if (transp == prob_t::Zero()) continue;
+ const prob_t p = inside * transp;
+ ss.add(p);
+ nexts.push_back(pair<short,short>(hyp_i, hyp_j));
+// cerr << " (" << hyp_i << "," << hyp_j << ") <--- " << log(p) << endl;
+ }
+ }
+// cerr << " sample set has " << nexts.size() << " elements.\n";
+ const int selected = rng->SelectSample(ss);
+ cur_i = nexts[selected].first;
+ cur_j = nexts[selected].second;
+ }
+ newderiv.push_back(pair<short,short>(0,0));
+ const prob_t q_new = DerivationProposalProbability(newderiv, sentf, sente);
+ IncrementDerivation(newderiv, sentf, sente);
+// cerr << "SANITY: " << q_new << " " <<log(DerivationProposalProbability(newderiv, sentf, sente)) << endl;
+ if (deriv.empty()) { deriv = newderiv; continue; }
+ ++mh_samples;
+
+ if (deriv != newderiv) {
+ const prob_t p_new = Likelihood();
+// cerr << "p_cur=" << log(p_cur) << "\t p_new=" << log(p_new) << endl;
+// cerr << "q_cur=" << log(q_cur) << "\t q_new=" << log(q_new) << endl;
+ if (!rng->AcceptMetropolisHastings(p_new, p_cur, q_new, q_cur)) {
+ ++mh_rejects;
+ DecrementDerivation(newderiv, sentf, sente);
+ IncrementDerivation(deriv, sentf, sente);
+ } else {
+// cerr << " ACCEPT\n";
+ deriv = newderiv;
+ }
+ }
+ }
+ }
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
+ kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
+
+ if (!conf.count("model1")) {
+ cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
+ return 1;
+ }
+ if (conf.count("random_seed"))
+ prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
+ else
+ prng.reset(new MT19937);
+// MT19937& rng = *prng;
+
+ vector<vector<int> > corpuse, corpusf;
+ set<int> vocabe, vocabf;
+ corpus::ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
+ cerr << "f-Corpus size: " << corpusf.size() << " sentences\n";
+ cerr << "f-Vocabulary size: " << vocabf.size() << " types\n";
+ cerr << "f-Corpus size: " << corpuse.size() << " sentences\n";
+ cerr << "f-Vocabulary size: " << vocabe.size() << " types\n";
+ assert(corpusf.size() == corpuse.size());
+
+ Model1 m1(conf["model1"].as<string>());
+
+ PhraseConditionalBase pcb0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size());
+ ConditionalParallelSegementationModel<PhraseConditionalBase> x(pcb0);
+
+ ModelAndData posterior(x, corpuse, corpusf, vocabe, vocabf);
+ posterior.Sample();
+
+ TRule r1("[X] ||| x ||| l e ||| X=0");
+ TRule r2("[X] ||| A ||| a d ||| X=0");
+ TRule r3("[X] ||| n ||| e r ||| X=0");
+ TRule r4("[X] ||| x A n ||| b l a g ||| X=0");
+
+ PhraseConditionalUninformativeBase u0(vocabe.size());
+
+ cerr << (pcb0(r1)*pcb0(r2)*pcb0(r3)) << endl;
+ cerr << (u0(r4)) << endl;
+
+ return 0;
+}
+