diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2011-09-13 17:36:23 +0100 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2011-09-13 17:36:23 +0100 |
commit | bb86637332d49f71c485df34576e464eaf053656 (patch) | |
tree | efaa1cb07db897f3443c9dc69712999a530921f3 | |
parent | 7fadd06330c015d7ebc51ebd50e30332d187acbb (diff) |
get rid of bad Weights class so it no longer keeps a copy of a vector inside it
-rw-r--r-- | decoder/decoder.cc | 64 | ||||
-rw-r--r-- | decoder/decoder.h | 9 | ||||
-rw-r--r-- | mira/kbest_mira.cc | 62 | ||||
-rw-r--r-- | pro-train/mr_pro_map.cc | 8 | ||||
-rw-r--r-- | pro-train/mr_pro_reduce.cc | 16 | ||||
-rw-r--r-- | training/Makefile.am | 8 | ||||
-rw-r--r-- | training/augment_grammar.cc | 4 | ||||
-rw-r--r-- | training/collapse_weights.cc | 6 | ||||
-rw-r--r-- | training/compute_cllh.cc | 23 | ||||
-rw-r--r-- | training/grammar_convert.cc | 8 | ||||
-rw-r--r-- | training/mpi_batch_optimize.cc | 127 | ||||
-rw-r--r-- | training/mpi_online_optimize.cc | 69 | ||||
-rw-r--r-- | training/mr_optimize_reduce.cc | 19 | ||||
-rw-r--r-- | utils/fdict.h | 2 | ||||
-rw-r--r-- | utils/phmt.cc | 8 | ||||
-rw-r--r-- | utils/weights.cc | 75 | ||||
-rw-r--r-- | utils/weights.h | 22 | ||||
-rw-r--r-- | vest/mr_vest_generate_mapper_input.cc | 6 |
18 files changed, 201 insertions, 335 deletions
diff --git a/decoder/decoder.cc b/decoder/decoder.cc index 25eb2de4..4d4b6245 100644 --- a/decoder/decoder.cc +++ b/decoder/decoder.cc @@ -159,8 +159,7 @@ struct RescoringPass { shared_ptr<ModelSet> models; shared_ptr<IntersectionConfiguration> inter_conf; vector<const FeatureFunction*> ffs; - shared_ptr<Weights> w; // null == use previous weights - vector<double> weight_vector; + shared_ptr<vector<weight_t> > weight_vector; int fid_summary; // 0 == no summary feature double density_prune; // 0 == don't density prune double beam_prune; // 0 == don't beam prune @@ -169,7 +168,7 @@ struct RescoringPass { ostream& operator<<(ostream& os, const RescoringPass& rp) { os << "[num_fn=" << rp.ffs.size(); if (rp.inter_conf) { os << " int_alg=" << *rp.inter_conf; } - if (rp.w) os << " new_weights"; + //if (rp.weight_vector.size() > 0) os << " new_weights"; if (rp.fid_summary) os << " summary_feature=" << FD::Convert(rp.fid_summary); if (rp.density_prune) os << " density_prune=" << rp.density_prune; if (rp.beam_prune) os << " beam_prune=" << rp.beam_prune; @@ -181,13 +180,8 @@ struct DecoderImpl { DecoderImpl(po::variables_map& conf, int argc, char** argv, istream* cfg); ~DecoderImpl(); bool Decode(const string& input, DecoderObserver*); - void SetWeights(const vector<double>& weights) { - init_weights = weights; - for (int i = 0; i < rescoring_passes.size(); ++i) { - if (rescoring_passes[i].models) - rescoring_passes[i].models->SetWeights(weights); - rescoring_passes[i].weight_vector = weights; - } + vector<weight_t>& CurrentWeightVector() { + return *rescoring_passes.back().weight_vector; } void SetId(int next_sent_id) { sent_id = next_sent_id - 1; } @@ -300,8 +294,7 @@ struct DecoderImpl { OracleBleu oracle; string formalism; shared_ptr<Translator> translator; - Weights w_init_weights; // used with initial parse - vector<double> init_weights; // weights used with initial parse + shared_ptr<vector<weight_t> > init_weights; // weights used with initial parse vector<shared_ptr<FeatureFunction> > pffs; #ifdef FSA_RESCORING CFGOptions cfg_options; @@ -557,13 +550,18 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream exit(1); } - // load initial feature weights (and possibly freeze feature set) - if (conf.count("weights")) { - w_init_weights.InitFromFile(str("weights",conf)); - w_init_weights.InitVector(&init_weights); - init_weights.resize(FD::NumFeats()); + // load perfect hash function for features + if (conf.count("cmph_perfect_feature_hash")) { + cerr << "Loading perfect hash function from " << conf["cmph_perfect_feature_hash"].as<string>() << " ...\n"; + FD::EnableHash(conf["cmph_perfect_feature_hash"].as<string>()); + cerr << " " << FD::NumFeats() << " features in map\n"; } + // load initial feature weights (and possibly freeze feature set) + init_weights.reset(new vector<weight_t>); + if (conf.count("weights")) + Weights::InitFromFile(str("weights",conf), init_weights.get()); + // cube pruning pop-limit: we may want to configure this on a per-pass basis pop_limit = conf["cubepruning_pop_limit"].as<int>(); @@ -582,9 +580,8 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream RescoringPass& rp = rescoring_passes.back(); // only configure new weights if pass > 0, otherwise we reuse the initial chart weights if (nth_pass_condition && conf.count(ws)) { - rp.w.reset(new Weights); - rp.w->InitFromFile(str(ws.c_str(), conf)); - rp.w->InitVector(&rp.weight_vector); + rp.weight_vector.reset(new vector<weight_t>()); + Weights::InitFromFile(str(ws.c_str(), conf), rp.weight_vector.get()); } bool has_stateful = false; if (conf.count(ff)) { @@ -624,11 +621,15 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream } // set up weight vectors since later phases may reuse weights from earlier phases - const vector<double>* prev = &init_weights; + shared_ptr<vector<weight_t> > prev_weights = init_weights; for (int pass = 0; pass < rescoring_passes.size(); ++pass) { RescoringPass& rp = rescoring_passes[pass]; - if (!rp.w) { rp.weight_vector = *prev; } else { prev = &rp.weight_vector; } - rp.models.reset(new ModelSet(rp.weight_vector, rp.ffs)); + if (!rp.weight_vector) { + rp.weight_vector = prev_weights; + } else { + prev_weights = rp.weight_vector; + } + rp.models.reset(new ModelSet(*rp.weight_vector, rp.ffs)); string ps = "Pass1 "; ps[4] += pass; if (!SILENT) show_models(conf,*rp.models,ps.c_str()); } @@ -650,12 +651,6 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream FD::Freeze(); // this means we can't see the feature names of not-weighted features } - if (conf.count("cmph_perfect_feature_hash")) { - cerr << "Loading perfect hash function from " << conf["cmph_perfect_feature_hash"].as<string>() << " ...\n"; - FD::EnableHash(conf["cmph_perfect_feature_hash"].as<string>()); - cerr << " " << FD::NumFeats() << " features in map\n"; - } - // set up translation back end if (formalism == "scfg") translator.reset(new SCFGTranslator(conf)); @@ -685,7 +680,7 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream } if (!fsa_ffs.empty()) { cerr<<"FSA: "; - show_all_features(fsa_ffs,init_weights,cerr,cerr,true,true); + show_all_features(fsa_ffs,*init_weights,cerr,cerr,true,true); } #endif @@ -733,7 +728,8 @@ bool Decoder::Decode(const string& input, DecoderObserver* o) { if (del) delete o; return res; } -void Decoder::SetWeights(const vector<double>& weights) { pimpl_->SetWeights(weights); } +vector<weight_t>& Decoder::CurrentWeightVector() { return pimpl_->CurrentWeightVector(); } +const vector<weight_t>& Decoder::CurrentWeightVector() const { return pimpl_->CurrentWeightVector(); } void Decoder::SetSupplementalGrammar(const std::string& grammar_string) { assert(pimpl_->translator->GetDecoderType() == "SCFG"); static_cast<SCFGTranslator&>(*pimpl_->translator).SetSupplementalGrammar(grammar_string); @@ -774,7 +770,7 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) { translator->ProcessMarkupHints(smeta.sgml_); Timer t("Translation"); const bool translation_successful = - translator->Translate(to_translate, &smeta, init_weights, &forest); + translator->Translate(to_translate, &smeta, *init_weights, &forest); translator->SentenceComplete(); if (!translation_successful) { @@ -812,7 +808,7 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) { for (int pass = 0; pass < rescoring_passes.size(); ++pass) { const RescoringPass& rp = rescoring_passes[pass]; - const vector<double>& cur_weights = rp.weight_vector; + const vector<weight_t>& cur_weights = *rp.weight_vector; if (!SILENT) cerr << endl << " RESCORING PASS #" << (pass+1) << " " << rp << endl; #ifdef FSA_RESCORING cfg_options.maybe_output_source(forest); @@ -933,7 +929,7 @@ bool DecoderImpl::Decode(const string& input, DecoderObserver* o) { #endif } - const vector<double>& last_weights = (rescoring_passes.empty() ? init_weights : rescoring_passes.back().weight_vector); + const vector<double>& last_weights = (rescoring_passes.empty() ? *init_weights : *rescoring_passes.back().weight_vector); // Oracle Rescoring if(get_oracle_forest) { diff --git a/decoder/decoder.h b/decoder/decoder.h index 5491369f..9d009ffa 100644 --- a/decoder/decoder.h +++ b/decoder/decoder.h @@ -7,6 +7,8 @@ #include <boost/shared_ptr.hpp> #include <boost/program_options/variables_map.hpp> +#include "weights.h" // weight_t + #undef CP_TIME //#define CP_TIME #ifdef CP_TIME @@ -39,7 +41,12 @@ struct Decoder { Decoder(int argc, char** argv); Decoder(std::istream* config_file); bool Decode(const std::string& input, DecoderObserver* observer = NULL); - void SetWeights(const std::vector<double>& weights); + + // access this to either *read* or *write* to the decoder's last + // weight vector (i.e., the weights of the finest past) + std::vector<weight_t>& CurrentWeightVector(); + const std::vector<weight_t>& CurrentWeightVector() const; + void SetId(int id); ~Decoder(); const boost::program_options::variables_map& GetConf() const { return conf; } diff --git a/mira/kbest_mira.cc b/mira/kbest_mira.cc index 6918a9a1..459a5e6f 100644 --- a/mira/kbest_mira.cc +++ b/mira/kbest_mira.cc @@ -32,21 +32,6 @@ namespace po = boost::program_options; bool invert_score; boost::shared_ptr<MT19937> rng; -void SanityCheck(const vector<double>& w) { - for (int i = 0; i < w.size(); ++i) { - assert(!isnan(w[i])); - assert(!isinf(w[i])); - } -} - -struct FComp { - const vector<double>& w_; - FComp(const vector<double>& w) : w_(w) {} - bool operator()(int a, int b) const { - return fabs(w_[a]) > fabs(w_[b]); - } -}; - void RandomPermutation(int len, vector<int>* p_ids) { vector<int>& ids = *p_ids; ids.resize(len); @@ -58,21 +43,6 @@ void RandomPermutation(int len, vector<int>* p_ids) { } } -void ShowLargestFeatures(const vector<double>& w) { - vector<int> fnums(w.size()); - for (int i = 0; i < w.size(); ++i) - fnums[i] = i; - vector<int>::iterator mid = fnums.begin(); - mid += (w.size() > 10 ? 10 : w.size()); - partial_sort(fnums.begin(), mid, fnums.end(), FComp(w)); - cerr << "TOP FEATURES:"; - --mid; - for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) { - cerr << ' ' << FD::Convert(*i) << '=' << w[*i]; - } - cerr << endl; -} - bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() @@ -209,14 +179,16 @@ int main(int argc, char** argv) { cerr << "Mismatched number of references (" << ds.size() << ") and sources (" << corpus.size() << ")\n"; return 1; } - // load initial weights - Weights weights; - weights.InitFromFile(conf["input_weights"].as<string>()); - SparseVector<double> lambdas; - weights.InitSparseVector(&lambdas); ReadFile ini_rf(conf["decoder_config"].as<string>()); Decoder decoder(ini_rf.stream()); + + // load initial weights + vector<weight_t>& dense_weights = decoder.CurrentWeightVector(); + SparseVector<weight_t> lambdas; + Weights::InitFromFile(conf["input_weights"].as<string>(), &dense_weights); + Weights::InitSparseVector(dense_weights, &lambdas); + const double max_step_size = conf["max_step_size"].as<double>(); const double mt_metric_scale = conf["mt_metric_scale"].as<double>(); @@ -230,7 +202,6 @@ int main(int argc, char** argv) { double tot_loss = 0; int dots = 0; int cur_pass = 0; - vector<double> dense_weights; SparseVector<double> tot; tot += lambdas; // initial weights normalizer++; // count for initial weights @@ -240,27 +211,22 @@ int main(int argc, char** argv) { vector<int> order; RandomPermutation(corpus.size(), &order); while (lcount <= max_iteration) { - dense_weights.clear(); - weights.InitFromVector(lambdas); - weights.InitVector(&dense_weights); - decoder.SetWeights(dense_weights); + lambdas.init_vector(&dense_weights); if ((cur_sent * 40 / corpus.size()) > dots) { ++dots; cerr << '.'; } if (corpus.size() == cur_sent) { cerr << " [AVG METRIC LAST PASS=" << (tot_loss / corpus.size()) << "]\n"; - ShowLargestFeatures(dense_weights); + Weights::ShowLargestFeatures(dense_weights); cur_sent = 0; tot_loss = 0; dots = 0; ostringstream os; os << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << ".gz"; - weights.WriteToFile(os.str(), true, &msg); SparseVector<double> x = tot; x /= normalizer; ostringstream sa; sa << "weights.mira-pass" << (cur_pass < 10 ? "0" : "") << cur_pass << "-avg.gz"; - Weights ww; - ww.InitFromVector(x); - ww.WriteToFile(sa.str(), true, &msga); + x.init_vector(&dense_weights); + Weights::WriteToFile(os.str(), dense_weights, true, &msg); ++cur_pass; RandomPermutation(corpus.size(), &order); } @@ -294,11 +260,11 @@ int main(int argc, char** argv) { ++cur_sent; } cerr << endl; - weights.WriteToFile("weights.mira-final.gz", true, &msg); + Weights::WriteToFile("weights.mira-final.gz", dense_weights, true, &msg); tot /= normalizer; - weights.InitFromVector(tot); + tot.init_vector(dense_weights); msg = "# MIRA tuned weights (averaged vector)"; - weights.WriteToFile("weights.mira-final-avg.gz", true, &msg); + Weights::WriteToFile("weights.mira-final-avg.gz", dense_weights, true, &msg); cerr << "Optimization complete.\nAVERAGED WEIGHTS: weights.mira-final-avg.gz\n"; return 0; } diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc index 4324e8de..bc59285b 100644 --- a/pro-train/mr_pro_map.cc +++ b/pro-train/mr_pro_map.cc @@ -301,12 +301,8 @@ int main(int argc, char** argv) { const unsigned gamma = conf["candidate_pairs"].as<unsigned>(); const unsigned xi = conf["best_pairs"].as<unsigned>(); string weightsf = conf["weights"].as<string>(); - vector<double> weights; - { - Weights w; - w.InitFromFile(weightsf); - w.InitVector(&weights); - } + vector<weight_t> weights; + Weights::InitFromFile(weightsf, &weights); string kbest_repo = conf["kbest_repository"].as<string>(); MkDirP(kbest_repo); while(in) { diff --git a/pro-train/mr_pro_reduce.cc b/pro-train/mr_pro_reduce.cc index 9b422f33..9caaa1d1 100644 --- a/pro-train/mr_pro_reduce.cc +++ b/pro-train/mr_pro_reduce.cc @@ -194,7 +194,7 @@ int main(int argc, char** argv) { InitCommandLine(argc, argv, &conf); string line; vector<pair<bool, SparseVector<double> > > training, testing; - SparseVector<double> old_weights; + SparseVector<weight_t> old_weights; const bool tune_regularizer = conf.count("tune_regularizer"); if (tune_regularizer && !conf.count("testset")) { cerr << "--tune_regularizer requires --testset to be set\n"; @@ -210,9 +210,9 @@ int main(int argc, char** argv) { const double psi = conf["interpolation"].as<double>(); if (psi < 0.0 || psi > 1.0) { cerr << "Invalid interpolation weight: " << psi << endl; } if (conf.count("weights")) { - Weights w; - w.InitFromFile(conf["weights"].as<string>()); - w.InitSparseVector(&old_weights); + vector<weight_t> dt; + Weights::InitFromFile(conf["weights"].as<string>(), &dt); + Weights::InitSparseVector(dt, &old_weights); } ReadCorpus(&cin, &training); if (conf.count("testset")) { @@ -220,8 +220,8 @@ int main(int argc, char** argv) { ReadCorpus(rf.stream(), &testing); } cerr << "Number of features: " << FD::NumFeats() << endl; - vector<double> x(FD::NumFeats(), 0.0); // x[0] is bias - for (SparseVector<double>::const_iterator it = old_weights.begin(); + vector<weight_t> x(FD::NumFeats(), 0.0); // x[0] is bias + for (SparseVector<weight_t>::const_iterator it = old_weights.begin(); it != old_weights.end(); ++it) x[it->first] = it->second; double tppl = 0.0; @@ -257,7 +257,6 @@ int main(int argc, char** argv) { sigsq = sp[best_i].first; tppl = LearnParameters(training, testing, sigsq, conf["memory_buffers"].as<unsigned>(), &x); } - Weights w; if (conf.count("weights")) { for (int i = 1; i < x.size(); ++i) x[i] = (x[i] * psi) + old_weights.get(i) * (1.0 - psi); @@ -271,7 +270,6 @@ int main(int argc, char** argv) { cout << "# " << sp[i].first << "\t" << sp[i].second << "\t" << smoothed[i] << endl; } } - w.InitFromVector(x); - w.WriteToFile("-"); + Weights::WriteToFile("-", x); return 0; } diff --git a/training/Makefile.am b/training/Makefile.am index e075e417..6e2c06f5 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -12,9 +12,7 @@ bin_PROGRAMS = \ cllh_filter_grammar \ mpi_online_optimize \ mpi_batch_optimize \ - mpi_em_optimize \ compute_cllh \ - feature_expectations \ augment_grammar noinst_PROGRAMS = \ @@ -29,12 +27,6 @@ mpi_online_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval mpi_batch_optimize_SOURCES = mpi_batch_optimize.cc optimize.cc mpi_batch_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz -feature_expectations_SOURCES = feature_expectations.cc -feature_expectations_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz - -mpi_em_optimize_SOURCES = mpi_em_optimize.cc optimize.cc -mpi_em_optimize_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz - compute_cllh_SOURCES = compute_cllh.cc compute_cllh_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz diff --git a/training/augment_grammar.cc b/training/augment_grammar.cc index df8d4ee8..e89a92d5 100644 --- a/training/augment_grammar.cc +++ b/training/augment_grammar.cc @@ -134,9 +134,7 @@ int main(int argc, char** argv) { } else { ngram = NULL; } extra_feature = conf.count("extra_lex_feature") > 0; if (conf.count("collapse_weights")) { - Weights w; - w.InitFromFile(conf["collapse_weights"].as<string>()); - w.InitVector(&col_weights); + Weights::InitFromFile(conf["collapse_weights"].as<string>(), &col_weights); } clear_features = conf.count("clear_features_after_collapse") > 0; gather_rules = false; diff --git a/training/collapse_weights.cc b/training/collapse_weights.cc index 4fb742fb..dc480f6c 100644 --- a/training/collapse_weights.cc +++ b/training/collapse_weights.cc @@ -59,10 +59,8 @@ int main(int argc, char** argv) { InitCommandLine(argc, argv, &conf); const string wfile = conf["weights"].as<string>(); const string gfile = conf["grammar"].as<string>(); - Weights wm; - wm.InitFromFile(wfile); - vector<double> w; - wm.InitVector(&w); + vector<weight_t> w; + Weights::InitFromFile(wfile, &w); MarginalMap e_tots; MarginalMap f_tots; prob_t tot; diff --git a/training/compute_cllh.cc b/training/compute_cllh.cc index 332f6d0c..b496d196 100644 --- a/training/compute_cllh.cc +++ b/training/compute_cllh.cc @@ -148,15 +148,6 @@ int main(int argc, char** argv) { if (!InitCommandLine(argc, argv, &conf)) return false; - // load initial weights - Weights weights; - if (conf.count("weights")) - weights.InitFromFile(conf["weights"].as<string>()); - - // freeze feature set - //const bool freeze_feature_set = conf.count("freeze_feature_set"); - //if (freeze_feature_set) FD::Freeze(); - // load cdec.ini and set up decoder ReadFile ini_rf(conf["decoder_config"].as<string>()); Decoder decoder(ini_rf.stream()); @@ -165,17 +156,22 @@ int main(int argc, char** argv) { abort(); } + // load weights + vector<weight_t>& weights = decoder.CurrentWeightVector(); + if (conf.count("weights")) + Weights::InitFromFile(conf["weights"].as<string>(), &weights); + + // freeze feature set + //const bool freeze_feature_set = conf.count("freeze_feature_set"); + //if (freeze_feature_set) FD::Freeze(); + vector<string> corpus; vector<int> ids; ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids); assert(corpus.size() > 0); assert(corpus.size() == ids.size()); - vector<double> wv; - weights.InitVector(&wv); - decoder.SetWeights(wv); TrainingObserver observer; double objective = 0; - bool converged = false; observer.Reset(); if (rank == 0) @@ -197,3 +193,4 @@ int main(int argc, char** argv) { return 0; } + diff --git a/training/grammar_convert.cc b/training/grammar_convert.cc index 8d292f8a..bf8abb26 100644 --- a/training/grammar_convert.cc +++ b/training/grammar_convert.cc @@ -251,12 +251,10 @@ int main(int argc, char **argv) { const bool is_split_input = (conf["format"].as<string>() == "split"); const bool is_json_input = is_split_input || (conf["format"].as<string>() == "json"); const bool collapse_weights = conf.count("collapse_weights"); - Weights wts; vector<double> w; - if (conf.count("weights")) { - wts.InitFromFile(conf["weights"].as<string>()); - wts.InitVector(&w); - } + if (conf.count("weights")) + Weights::InitFromFile(conf["weights"].as<string>(), &w); + if (collapse_weights && !w.size()) { cerr << "--collapse_weights requires a weights file to be specified!\n"; exit(1); diff --git a/training/mpi_batch_optimize.cc b/training/mpi_batch_optimize.cc index 39a8af7d..cc5953f6 100644 --- a/training/mpi_batch_optimize.cc +++ b/training/mpi_batch_optimize.cc @@ -31,42 +31,12 @@ using namespace std; using boost::shared_ptr; namespace po = boost::program_options; -void SanityCheck(const vector<double>& w) { - for (int i = 0; i < w.size(); ++i) { - assert(!isnan(w[i])); - assert(!isinf(w[i])); - } -} - -struct FComp { - const vector<double>& w_; - FComp(const vector<double>& w) : w_(w) {} - bool operator()(int a, int b) const { - return fabs(w_[a]) > fabs(w_[b]); - } -}; - -void ShowLargestFeatures(const vector<double>& w) { - vector<int> fnums(w.size()); - for (int i = 0; i < w.size(); ++i) - fnums[i] = i; - vector<int>::iterator mid = fnums.begin(); - mid += (w.size() > 10 ? 10 : w.size()); - partial_sort(fnums.begin(), mid, fnums.end(), FComp(w)); - cerr << "TOP FEATURES:"; - for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) { - cerr << ' ' << FD::Convert(*i) << '=' << w[*i]; - } - cerr << endl; -} - bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("input_weights,w",po::value<string>(),"Input feature weights file") ("training_data,t",po::value<string>(),"Training data") ("decoder_config,d",po::value<string>(),"Decoder configuration file") - ("sharded_input,s",po::value<string>(), "Corpus and grammar files are 'sharded' so each processor loads its own input and grammar file. Argument is the directory containing the shards.") ("output_weights,o",po::value<string>()->default_value("-"),"Output feature weights file") ("optimization_method,m", po::value<string>()->default_value("lbfgs"), "Optimization method (sgd, lbfgs, rprop)") ("correction_buffers,M", po::value<int>()->default_value(10), "Number of gradients for LBFGS to maintain in memory") @@ -88,14 +58,10 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { } po::notify(*conf); - if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data") | conf->count("sharded_input")) || !conf->count("decoder_config")) { + if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data")) || !conf->count("decoder_config")) { cerr << dcmdline_options << endl; return false; } - if (conf->count("training_data") && conf->count("sharded_input")) { - cerr << "Cannot specify both --training_data and --sharded_input\n"; - return false; - } return true; } @@ -236,42 +202,9 @@ int main(int argc, char** argv) { po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; - string shard_dir; - if (conf.count("sharded_input")) { - shard_dir = conf["sharded_input"].as<string>(); - if (!DirectoryExists(shard_dir)) { - if (rank == 0) cerr << "Can't find shard directory: " << shard_dir << endl; - return 1; - } - if (rank == 0) - cerr << "Shard directory: " << shard_dir << endl; - } - - // load initial weights - Weights weights; - if (rank == 0) { cerr << "Loading weights...\n"; } - weights.InitFromFile(conf["input_weights"].as<string>()); - if (rank == 0) { cerr << "Done loading weights.\n"; } - - // freeze feature set (should be optional?) - const bool freeze_feature_set = true; - if (freeze_feature_set) FD::Freeze(); - // load cdec.ini and set up decoder vector<string> cdec_ini; ReadConfig(conf["decoder_config"].as<string>(), &cdec_ini); - if (shard_dir.size()) { - if (rank == 0) { - for (int i = 0; i < cdec_ini.size(); ++i) { - if (cdec_ini[i].find("grammar=") == 0) { - cerr << "!!! using sharded input and " << conf["decoder_config"].as<string>() << " contains a grammar specification:\n" << cdec_ini[i] << "\n VERIFY THAT THIS IS CORRECT!\n"; - } - } - } - ostringstream g; - g << "grammar=" << shard_dir << "/grammar." << rank << "_of_" << size << ".gz"; - cdec_ini.push_back(g.str()); - } istringstream ini; StoreConfig(cdec_ini, &ini); if (rank == 0) cerr << "Loading grammar...\n"; @@ -282,22 +215,28 @@ int main(int argc, char** argv) { } if (rank == 0) cerr << "Done loading grammar!\n"; + // load initial weights + if (rank == 0) { cerr << "Loading weights...\n"; } + vector<weight_t>& lambdas = decoder->CurrentWeightVector(); + Weights::InitFromFile(conf["input_weights"].as<string>(), &lambdas); + if (rank == 0) { cerr << "Done loading weights.\n"; } + + // freeze feature set (should be optional?) + const bool freeze_feature_set = true; + if (freeze_feature_set) FD::Freeze(); + const int num_feats = FD::NumFeats(); if (rank == 0) cerr << "Number of features: " << num_feats << endl; + lambdas.resize(num_feats); + const bool gaussian_prior = conf.count("gaussian_prior"); - vector<double> means(num_feats, 0); + vector<weight_t> means(num_feats, 0); if (conf.count("means")) { if (!gaussian_prior) { cerr << "Don't use --means without --gaussian_prior!\n"; exit(1); } - Weights wm; - wm.InitFromFile(conf["means"].as<string>()); - if (num_feats != FD::NumFeats()) { - cerr << "[ERROR] Means file had unexpected features!\n"; - exit(1); - } - wm.InitVector(&means); + Weights::InitFromFile(conf["means"].as<string>(), &means); } shared_ptr<BatchOptimizer> o; if (rank == 0) { @@ -309,26 +248,13 @@ int main(int argc, char** argv) { cerr << "Optimizer: " << o->Name() << endl; } double objective = 0; - vector<double> lambdas(num_feats, 0.0); - weights.InitVector(&lambdas); - if (lambdas.size() != num_feats) { - cerr << "Initial weights file did not have all features specified!\n feats=" - << num_feats << "\n weights file=" << lambdas.size() << endl; - lambdas.resize(num_feats, 0.0); - } vector<double> gradient(num_feats, 0.0); - vector<double> rcv_grad(num_feats, 0.0); + vector<double> rcv_grad; + rcv_grad.clear(); bool converged = false; vector<string> corpus; - if (shard_dir.size()) { - ostringstream os; os << shard_dir << "/corpus." << rank << "_of_" << size; - ReadTrainingCorpus(os.str(), 0, 1, &corpus); - cerr << os.str() << " has " << corpus.size() << " training examples. " << endl; - if (corpus.size() > 500) { corpus.resize(500); cerr << " TRUNCATING\n"; } - } else { - ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus); - } + ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus); assert(corpus.size() > 0); TrainingObserver observer; @@ -341,19 +267,20 @@ int main(int argc, char** argv) { if (rank == 0) { cerr << "Starting decoding... (~" << corpus.size() << " sentences / proc)\n"; } - decoder->SetWeights(lambdas); for (int i = 0; i < corpus.size(); ++i) decoder->Decode(corpus[i], &observer); cerr << " process " << rank << '/' << size << " done\n"; fill(gradient.begin(), gradient.end(), 0); - fill(rcv_grad.begin(), rcv_grad.end(), 0); observer.SetLocalGradientAndObjective(&gradient, &objective); double to = 0; #ifdef HAVE_MPI + rcv_grad.resize(num_feats, 0.0); mpi::reduce(world, &gradient[0], gradient.size(), &rcv_grad[0], plus<double>(), 0); - mpi::reduce(world, objective, to, plus<double>(), 0); swap(gradient, rcv_grad); + rcv_grad.clear(); + + mpi::reduce(world, objective, to, plus<double>(), 0); objective = to; #endif @@ -378,7 +305,7 @@ int main(int argc, char** argv) { for (int i = 0; i < gradient.size(); ++i) gnorm += gradient[i] * gradient[i]; cerr << " GNORM=" << sqrt(gnorm) << endl; - vector<double> old = lambdas; + vector<weight_t> old = lambdas; int c = 0; while (old == lambdas) { ++c; @@ -387,9 +314,8 @@ int main(int argc, char** argv) { assert(c < 5); } old.clear(); - SanityCheck(lambdas); - ShowLargestFeatures(lambdas); - weights.InitFromVector(lambdas); + Weights::SanityCheck(lambdas); + Weights::ShowLargestFeatures(lambdas); converged = o->HasConverged(); if (converged) { cerr << "OPTIMIZER REPORTS CONVERGENCE!\n"; } @@ -399,7 +325,7 @@ int main(int argc, char** argv) { ostringstream vv; vv << "Objective = " << objective << " (eval count=" << o->EvaluationCount() << ")"; const string svv = vv.str(); - weights.WriteToFile(fname, true, &svv); + Weights::WriteToFile(fname, lambdas, true, &svv); } // rank == 0 int cint = converged; #ifdef HAVE_MPI @@ -411,3 +337,4 @@ int main(int argc, char** argv) { } return 0; } + diff --git a/training/mpi_online_optimize.cc b/training/mpi_online_optimize.cc index 32033c19..2ef4a2e7 100644 --- a/training/mpi_online_optimize.cc +++ b/training/mpi_online_optimize.cc @@ -31,35 +31,6 @@ namespace mpi = boost::mpi; using namespace std; namespace po = boost::program_options; -void SanityCheck(const vector<double>& w) { - for (int i = 0; i < w.size(); ++i) { - assert(!isnan(w[i])); - assert(!isinf(w[i])); - } -} - -struct FComp { - const vector<double>& w_; - FComp(const vector<double>& w) : w_(w) {} - bool operator()(int a, int b) const { - return fabs(w_[a]) > fabs(w_[b]); - } -}; - -void ShowLargestFeatures(const vector<double>& w) { - vector<int> fnums(w.size()); - for (int i = 0; i < w.size(); ++i) - fnums[i] = i; - vector<int>::iterator mid = fnums.begin(); - mid += (w.size() > 10 ? 10 : w.size()); - partial_sort(fnums.begin(), mid, fnums.end(), FComp(w)); - cerr << "TOP FEATURES:"; - for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) { - cerr << ' ' << FD::Convert(*i) << '=' << w[*i]; - } - cerr << endl; -} - bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() @@ -250,10 +221,25 @@ int main(int argc, char** argv) { if (!InitCommandLine(argc, argv, &conf)) return 1; + vector<pair<string, int> > agenda; + if (!LoadAgenda(conf["training_agenda"].as<string>(), &agenda)) + return 1; + if (rank == 0) + cerr << "Loaded agenda defining " << agenda.size() << " training epochs\n"; + + assert(agenda.size() > 0); + + if (1) { // hack to load the feature hash functions -- TODO this should not be in cdec.ini + const string& cur_config = agenda[0].first; + const unsigned max_iteration = agenda[0].second; + ReadFile ini_rf(cur_config); + Decoder decoder(ini_rf.stream()); + } + // load initial weights - Weights weights; + vector<weight_t> init_weights; if (conf.count("input_weights")) - weights.InitFromFile(conf["input_weights"].as<string>()); + Weights::InitFromFile(conf["input_weights"].as<string>(), &init_weights); vector<int> frozen_fids; if (conf.count("frozen_features")) { @@ -310,19 +296,12 @@ int main(int argc, char** argv) { rng.reset(new MT19937); SparseVector<double> x; - weights.InitSparseVector(&x); + Weights::InitSparseVector(init_weights, &x); TrainingObserver observer; int write_weights_every_ith = 100; // TODO configure int titer = -1; - vector<pair<string, int> > agenda; - if (!LoadAgenda(conf["training_agenda"].as<string>(), &agenda)) - return 1; - if (rank == 0) - cerr << "Loaded agenda defining " << agenda.size() << " training epochs\n"; - - vector<double> lambdas; for (int ai = 0; ai < agenda.size(); ++ai) { const string& cur_config = agenda[ai].first; const unsigned max_iteration = agenda[ai].second; @@ -331,6 +310,8 @@ int main(int argc, char** argv) { // load cdec.ini and set up decoder ReadFile ini_rf(cur_config); Decoder decoder(ini_rf.stream()); + vector<weight_t>& lambdas = decoder.CurrentWeightVector(); + if (ai == 0) { lambdas.swap(init_weights); init_weights.clear(); } if (rank == 0) o->ResetEpoch(); // resets the learning rate-- TODO is this good? @@ -341,15 +322,13 @@ int main(int argc, char** argv) { #ifdef HAVE_MPI mpi::timer timer; #endif - weights.InitFromVector(x); - weights.InitVector(&lambdas); + x.init_vector(&lambdas); ++iter; ++titer; observer.Reset(); - decoder.SetWeights(lambdas); if (rank == 0) { converged = (iter == max_iteration); - SanityCheck(lambdas); - ShowLargestFeatures(lambdas); + Weights::SanityCheck(lambdas); + Weights::ShowLargestFeatures(lambdas); string fname = "weights.cur.gz"; if (iter % write_weights_every_ith == 0) { ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz"; @@ -360,7 +339,7 @@ int main(int argc, char** argv) { vv << "total iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << '/' << FD::NumFeats() << " passes_thru_data=" << (titer * size_per_proc / static_cast<double>(corpus.size())) << " eta=" << lr->eta(titer); const string svv = vv.str(); cerr << svv << endl; - weights.WriteToFile(fname, true, &svv); + Weights::WriteToFile(fname, lambdas, true, &svv); } for (int i = 0; i < size_per_proc; ++i) { diff --git a/training/mr_optimize_reduce.cc b/training/mr_optimize_reduce.cc index b931991d..15e28fa1 100644 --- a/training/mr_optimize_reduce.cc +++ b/training/mr_optimize_reduce.cc @@ -88,25 +88,19 @@ int main(int argc, char** argv) { const bool use_b64 = conf["input_format"].as<string>() == "b64"; - Weights weights; - weights.InitFromFile(conf["input_weights"].as<string>()); + vector<weight_t> lambdas; + Weights::InitFromFile(conf["input_weights"].as<string>(), &lambdas); const string s_obj = "**OBJ**"; int num_feats = FD::NumFeats(); cerr << "Number of features: " << num_feats << endl; const bool gaussian_prior = conf.count("gaussian_prior"); - vector<double> means(num_feats, 0); + vector<weight_t> means(num_feats, 0); if (conf.count("means")) { if (!gaussian_prior) { cerr << "Don't use --means without --gaussian_prior!\n"; exit(1); } - Weights wm; - wm.InitFromFile(conf["means"].as<string>()); - if (num_feats != FD::NumFeats()) { - cerr << "[ERROR] Means file had unexpected features!\n"; - exit(1); - } - wm.InitVector(&means); + Weights::InitFromFile(conf["means"].as<string>(), &means); } shared_ptr<BatchOptimizer> o; const string omethod = conf["optimization_method"].as<string>(); @@ -124,8 +118,6 @@ int main(int argc, char** argv) { cerr << "No state file found, assuming ITERATION 1\n"; } - vector<double> lambdas(num_feats, 0); - weights.InitVector(&lambdas); double objective = 0; vector<double> gradient(num_feats, 0); // 0<TAB>**OBJ**=12.2;Feat1=2.3;Feat2=-0.2; @@ -223,8 +215,7 @@ int main(int argc, char** argv) { old.clear(); SanityCheck(lambdas); ShowLargestFeatures(lambdas); - weights.InitFromVector(lambdas); - weights.WriteToFile(conf["output_weights"].as<string>(), false); + Weights::WriteToFile(conf["output_weights"].as<string>(), lambdas, false); const bool conv = o->HasConverged(); if (conv) { cerr << "OPTIMIZER REPORTS CONVERGENCE!\n"; } diff --git a/utils/fdict.h b/utils/fdict.h index 771e8b91..f0871b9a 100644 --- a/utils/fdict.h +++ b/utils/fdict.h @@ -28,6 +28,8 @@ struct FD { } static void EnableHash(const std::string& cmph_file) { #ifdef HAVE_CMPH + assert(dict_.max() == 0); // dictionary must not have + // been added to hash_ = new PerfectHashFunction(cmph_file); #endif } diff --git a/utils/phmt.cc b/utils/phmt.cc index 1f59afaf..48d9f093 100644 --- a/utils/phmt.cc +++ b/utils/phmt.cc @@ -19,22 +19,18 @@ int main(int argc, char** argv) { cerr << "LexFE = " << FD::Convert("LexFE") << endl; cerr << "LexEF = " << FD::Convert("LexEF") << endl; { - Weights w; vector<weight_t> v(FD::NumFeats()); v[FD::Convert("LexFE")] = 1.0; v[FD::Convert("LexEF")] = 0.5; - w.InitFromVector(v); cerr << "Writing...\n"; - w.WriteToFile("weights.bin"); + Weights::WriteToFile("weights.bin", v); cerr << "Done.\n"; } { - Weights w; vector<weight_t> v(FD::NumFeats()); cerr << "Reading...\n"; - w.InitFromFile("weights.bin"); + Weights::InitFromFile("weights.bin", &v); cerr << "Done.\n"; - w.InitVector(&v); assert(v[FD::Convert("LexFE")] == 1.0); assert(v[FD::Convert("LexEF")] == 0.5); } diff --git a/utils/weights.cc b/utils/weights.cc index 0916b72a..c49000be 100644 --- a/utils/weights.cc +++ b/utils/weights.cc @@ -8,7 +8,10 @@ using namespace std; -void Weights::InitFromFile(const std::string& filename, vector<string>* feature_list) { +void Weights::InitFromFile(const string& filename, + vector<weight_t>* pweights, + vector<string>* feature_list) { + vector<weight_t>& weights = *pweights; if (!SILENT) cerr << "Reading weights from " << filename << endl; ReadFile in_file(filename); istream& in = *in_file.stream(); @@ -47,16 +50,16 @@ void Weights::InitFromFile(const std::string& filename, vector<string>* feature_ int end = 0; while(end < buf.size() && buf[end] != ' ') ++end; const int fid = FD::Convert(buf.substr(start, end - start)); + if (feature_list) { feature_list->push_back(buf.substr(start, end - start)); } while(end < buf.size() && buf[end] == ' ') ++end; val = strtod(&buf.c_str()[end], NULL); if (isnan(val)) { cerr << FD::Convert(fid) << " has weight NaN!\n"; abort(); } - if (wv_.size() <= fid) - wv_.resize(fid + 1); - wv_[fid] = val; - if (feature_list) { feature_list->push_back(FD::Convert(fid)); } + if (weights.size() <= fid) + weights.resize(fid + 1); + weights[fid] = val; ++weight_count; if (!SILENT) { if (weight_count % 50000 == 0) { cerr << '.' << flush; fl = true; } @@ -76,8 +79,8 @@ void Weights::InitFromFile(const std::string& filename, vector<string>* feature_ cerr << "Hash function reports " << FD::NumFeats() << " keys but weights file contains " << num_keys[0] << endl; abort(); } - wv_.resize(num_keys[0]); - in.get(reinterpret_cast<char*>(&wv_[0]), num_keys[0] * sizeof(weight_t)); + weights.resize(num_keys[0]); + in.get(reinterpret_cast<char*>(&weights[0]), num_keys[0] * sizeof(weight_t)); if (!in.good()) { cerr << "Error loading weights!\n"; abort(); @@ -85,7 +88,10 @@ void Weights::InitFromFile(const std::string& filename, vector<string>* feature_ } } -void Weights::WriteToFile(const std::string& fname, bool hide_zero_value_features, const string* extra) const { +void Weights::WriteToFile(const string& fname, + const vector<weight_t>& weights, + bool hide_zero_value_features, + const string* extra) { WriteFile out(fname); ostream& o = *out.stream(); assert(o); @@ -96,41 +102,54 @@ void Weights::WriteToFile(const std::string& fname, bool hide_zero_value_feature o.precision(17); const int num_feats = FD::NumFeats(); for (int i = 1; i < num_feats; ++i) { - const weight_t val = (i < wv_.size() ? wv_[i] : 0.0); + const weight_t val = (i < weights.size() ? weights[i] : 0.0); if (hide_zero_value_features && val == 0.0) continue; o << FD::Convert(i) << ' ' << val << endl; } } else { o.write("_PHWf", 5); const size_t keys = FD::NumFeats(); - assert(keys <= wv_.size()); + assert(keys <= weights.size()); o.write(reinterpret_cast<const char*>(&keys), sizeof(keys)); - o.write(reinterpret_cast<const char*>(&wv_[0]), keys * sizeof(weight_t)); + o.write(reinterpret_cast<const char*>(&weights[0]), keys * sizeof(weight_t)); } } -void Weights::InitVector(std::vector<weight_t>* w) const { - *w = wv_; +void Weights::InitSparseVector(const vector<weight_t>& dv, + SparseVector<weight_t>* sv) { + sv->clear(); + for (unsigned i = 1; i < dv.size(); ++i) { + if (dv[i]) sv->set_value(i, dv[i]); + } } -void Weights::InitSparseVector(SparseVector<weight_t>* w) const { - for (int i = 1; i < wv_.size(); ++i) { - const weight_t& weight = wv_[i]; - if (weight) w->set_value(i, weight); +void Weights::SanityCheck(const vector<weight_t>& w) { + for (int i = 0; i < w.size(); ++i) { + assert(!isnan(w[i])); + assert(!isinf(w[i])); } } -void Weights::InitFromVector(const std::vector<weight_t>& w) { - wv_ = w; - if (wv_.size() > FD::NumFeats()) - cerr << "WARNING: initializing weight vector has more features than the global feature dictionary!\n"; - wv_.resize(FD::NumFeats(), 0); -} +struct FComp { + const vector<weight_t>& w_; + FComp(const vector<weight_t>& w) : w_(w) {} + bool operator()(int a, int b) const { + return fabs(w_[a]) > fabs(w_[b]); + } +}; -void Weights::InitFromVector(const SparseVector<weight_t>& w) { - wv_.clear(); - wv_.resize(FD::NumFeats(), 0.0); - for (int i = 1; i < FD::NumFeats(); ++i) - wv_[i] = w.value(i); +void Weights::ShowLargestFeatures(const vector<weight_t>& w) { + vector<int> fnums(w.size()); + for (int i = 0; i < w.size(); ++i) + fnums[i] = i; + vector<int>::iterator mid = fnums.begin(); + mid += (w.size() > 10 ? 10 : w.size()); + partial_sort(fnums.begin(), mid, fnums.end(), FComp(w)); + cerr << "TOP FEATURES:"; + for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) { + cerr << ' ' << FD::Convert(*i) << '=' << w[*i]; + } + cerr << endl; } + diff --git a/utils/weights.h b/utils/weights.h index 7664810b..30f71db0 100644 --- a/utils/weights.h +++ b/utils/weights.h @@ -10,15 +10,21 @@ typedef double weight_t; class Weights { public: - Weights() {} - void InitFromFile(const std::string& fname, std::vector<std::string>* feature_list = NULL); - void WriteToFile(const std::string& fname, bool hide_zero_value_features = true, const std::string* extra = NULL) const; - void InitVector(std::vector<weight_t>* w) const; - void InitSparseVector(SparseVector<weight_t>* w) const; - void InitFromVector(const std::vector<weight_t>& w); - void InitFromVector(const SparseVector<weight_t>& w); + static void InitFromFile(const std::string& fname, + std::vector<weight_t>* weights, + std::vector<std::string>* feature_list = NULL); + static void WriteToFile(const std::string& fname, + const std::vector<weight_t>& weights, + bool hide_zero_value_features = true, + const std::string* extra = NULL); + static void InitSparseVector(const std::vector<weight_t>& dv, + SparseVector<weight_t>* sv); + // check for infinities, NaNs, etc + static void SanityCheck(const std::vector<weight_t>& w); + // write weights with largest magnitude to cerr + static void ShowLargestFeatures(const std::vector<weight_t>& w); private: - std::vector<weight_t> wv_; + Weights(); }; #endif diff --git a/vest/mr_vest_generate_mapper_input.cc b/vest/mr_vest_generate_mapper_input.cc index b84c44bc..0c094fd5 100644 --- a/vest/mr_vest_generate_mapper_input.cc +++ b/vest/mr_vest_generate_mapper_input.cc @@ -223,16 +223,16 @@ struct oracle_directions { cerr << "Forest repo: " << forest_repository << endl; assert(DirectoryExists(forest_repository)); vector<string> features; - weights.InitFromFile(weights_file, &features); + vector<weight_t> dorigin; + Weights::InitFromFile(weights_file, &dorigin, &features); if (optimize_features.size()) features=optimize_features; - weights.InitSparseVector(&origin); + Weights::InitSparseVector(dorigin, &origin); fids.clear(); AddFeatureIds(features); oracles.resize(dev_set_size); } - Weights weights; void AddFeatureIds(vector<string> const& features) { int i = fids.size(); fids.resize(fids.size()+features.size()); |