diff options
author | Chris Dyer <redpony@gmail.com> | 2013-08-08 13:32:44 -0700 |
---|---|---|
committer | Chris Dyer <redpony@gmail.com> | 2013-08-08 13:32:44 -0700 |
commit | 951e7daa9539ffe640f9421897c374f786af53e7 (patch) | |
tree | 321898257090cc623fa7ea10d81b8e83126a5a0b | |
parent | f4a3a2547316ca5d31366e6808858fe94981415c (diff) | |
parent | af2b10dd036aa0088cfef108c1c9713b7e2d9f8f (diff) |
Merge pull request #24 from pks/master
current dtrain version
29 files changed, 1634 insertions, 197 deletions
diff --git a/decoder/Makefile.am b/decoder/Makefile.am index ef98289e..914faaea 100644 --- a/decoder/Makefile.am +++ b/decoder/Makefile.am @@ -143,7 +143,13 @@ libcdec_a_SOURCES = \ ff_csplit.cc \ ff_tagger.cc \ ff_source_path.cc \ + ff_parse_match.cc \ + ff_soft_syntax.cc \ + ff_soft_syntax2.cc \ ff_source_syntax.cc \ + ff_source_syntax_p.cc \ + ff_source_syntax2.cc \ + ff_source_syntax2_p.cc \ ff_bleu.cc \ ff_factory.cc \ incremental.cc \ diff --git a/decoder/cdec_ff.cc b/decoder/cdec_ff.cc index 0bf441d4..e7b31f50 100644 --- a/decoder/cdec_ff.cc +++ b/decoder/cdec_ff.cc @@ -14,8 +14,18 @@ #include "ff_rules.h" #include "ff_ruleshape.h" #include "ff_bleu.h" +#include "ff_soft_syntax.h" +#include "ff_soft_syntax2.h" #include "ff_source_path.h" + + +#include "ff_parse_match.h" #include "ff_source_syntax.h" +#include "ff_source_syntax_p.h" +#include "ff_source_syntax2.h" +#include "ff_source_syntax2_p.h" + + #include "ff_register.h" #include "ff_charset.h" #include "ff_wordset.h" @@ -48,8 +58,23 @@ void register_feature_functions() { ff_registry.Register("NgramFeatures", new FFFactory<NgramDetector>()); ff_registry.Register("RuleContextFeatures", new FFFactory<RuleContextFeatures>()); ff_registry.Register("RuleIdentityFeatures", new FFFactory<RuleIdentityFeatures>()); + + + ff_registry.Register("ParseMatchFeatures", new FFFactory<ParseMatchFeatures>); + + ff_registry.Register("SoftSyntacticFeatures", new FFFactory<SoftSyntacticFeatures>); + ff_registry.Register("SoftSyntacticFeatures2", new FFFactory<SoftSyntacticFeatures2>); + ff_registry.Register("SourceSyntaxFeatures", new FFFactory<SourceSyntaxFeatures>); + ff_registry.Register("SourceSyntaxFeatures2", new FFFactory<SourceSyntaxFeatures2>); + ff_registry.Register("SourceSpanSizeFeatures", new FFFactory<SourceSpanSizeFeatures>); + + //ff_registry.Register("PSourceSyntaxFeatures", new FFFactory<PSourceSyntaxFeatures>); + //ff_registry.Register("PSourceSpanSizeFeatures", new FFFactory<PSourceSpanSizeFeatures>); + //ff_registry.Register("PSourceSyntaxFeatures2", new FFFactory<PSourceSyntaxFeatures2>); + + ff_registry.Register("CMR2008ReorderingFeatures", new FFFactory<CMR2008ReorderingFeatures>()); ff_registry.Register("RuleSourceBigramFeatures", new FFFactory<RuleSourceBigramFeatures>()); ff_registry.Register("RuleTargetBigramFeatures", new FFFactory<RuleTargetBigramFeatures>()); diff --git a/decoder/ff_parse_match.cc b/decoder/ff_parse_match.cc new file mode 100644 index 00000000..ed556b91 --- /dev/null +++ b/decoder/ff_parse_match.cc @@ -0,0 +1,218 @@ +#include "ff_parse_match.h" + +#include <sstream> +#include <stack> +#include <string> + +#include "sentence_metadata.h" +#include "array2d.h" +#include "filelib.h" + +using namespace std; + +// implements the parse match features as described in Vilar et al. (2008) +// source trees must be represented in Penn Treebank format, e.g. +// (S (NP John) (VP (V left))) + +struct ParseMatchFeaturesImpl { + ParseMatchFeaturesImpl(const string& param) { + if (param.compare("") != 0) { + char score_param = (char) param[0]; + switch(score_param) { + case 'b': + scoring_method = 0; + break; + case 'l': + scoring_method = 1; + break; + case 'e': + scoring_method = 2; + break; + case 'r': + scoring_method = 3; + break; + default: + scoring_method = 0; + } + } + else { + scoring_method = 0; + } + } + + void InitializeGrids(const string& tree, unsigned src_len) { + assert(tree.size() > 0); + //fids_cat.clear(); + fids_ef.clear(); + src_tree.clear(); + //fids_cat.resize(src_len, src_len + 1); + fids_ef.resize(src_len, src_len + 1); + src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); + ParseTreeString(tree, src_len); + } + + void ParseTreeString(const string& tree, unsigned src_len) { + //cerr << "TREE: " << tree << endl; + src_sent_len = src_len; + stack<pair<int, WordID> > stk; // first = i, second = category + pair<int, WordID> cur_cat; cur_cat.first = -1; + unsigned i = 0; + unsigned p = 0; + while(p < tree.size()) { + const char cur = tree[p]; + if (cur == '(') { + stk.push(cur_cat); + ++p; + unsigned k = p + 1; + while (k < tree.size() && tree[k] != ' ') { ++k; } + cur_cat.first = i; + cur_cat.second = TD::Convert(tree.substr(p, k - p)); + // cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + p = k + 1; + } else if (cur == ')') { + unsigned k = p; + while (k < tree.size() && tree[k] == ')') { ++k; } + const unsigned num_closes = k - p; + for (unsigned ci = 0; ci < num_closes; ++ci) { + // cur_cat.second spans from cur_cat.first to i + // cerr << TD::Convert(cur_cat.second) << " from " << cur_cat.first << " to " << i << endl; + // NOTE: unary rule chains end up being labeled with the top-most category + src_tree(cur_cat.first, i) = cur_cat.second; + cur_cat = stk.top(); + stk.pop(); + } + p = k; + while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } + } else if (cur == ' ' || cur == '\t') { + cerr << "Unexpected whitespace in: " << tree << endl; + abort(); + } else { // terminal symbol + unsigned k = p + 1; + do { + while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } + // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + ++i; + assert(i <= src_len); + while (k < tree.size() && tree[k] == ' ') { ++k; } + p = k; + } while (p < tree.size() && tree[p] != ')'); + } + //cerr << "i=" << i << " src_len=" << src_len << endl; + } + //cerr << "i=" << i << " src_len=" << src_len << endl; + assert(i == src_len); // make sure tree specified in src_tree is + // the same length as the source sentence + } + + int FireFeatures(const TRule& rule, const int i, const int j, int* ants, SparseVector<double>* feats) { + //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; + //cerr << rule << endl; + //cerr << "span: " << i << " " << j << endl; + const WordID lhs = src_tree(i,j); + int fid_ef = FD::Convert("PM"); + int min_dist; // minimal distance to next syntactic constituent of this rule's LHS + int summed_min_dists; // minimal distances of LHS and NTs summed up + if (TD::Convert(lhs).compare("XX") != 0) + min_dist= 0; + // compute the distance to the next syntactical constituent + else { + int ok = 0; + for (unsigned int k = 1; k < (j - i); k++) { + min_dist = k; + for (unsigned int l = 0; l <= k; l++) { + // check if adding k words to the rule span will + // lead to a syntactical constituent + int l_add = i-l; + int r_add = j+(k-l); + //cerr << "Adding: " << l_add << " " << r_add << endl; + if ((l_add < src_tree.width() && r_add < src_tree.height()) && (TD::Convert(src_tree(l_add, r_add)).compare("XX") != 0)) { + //cerr << TD::Convert(src_tree(i-l,j+(k-l))) << endl; + //cerr << "span_add: " << l_add << " " << r_add << endl; + ok = 1; + break; + } + // check if removing k words from the rule span will + // lead to a syntactical constituent + else { + //cerr << "Hilfe...!" << endl; + int l_rem= i+l; + int r_rem = j-(k-l); + //cerr << "Removing: " << l_rem << " " << r_rem << endl; + if ((l_rem < src_tree.width() && r_rem < src_tree.height()) && TD::Convert(src_tree(l_rem, r_rem)).compare("XX") != 0) { + //cerr << TD::Convert(src_tree(i+l,j-(k-l))) << endl; + //cerr << "span_rem: " << l_rem << " " << r_rem << endl; + ok = 1; + break; + } + } + } + if (ok) break; + } + } + summed_min_dists = min_dist; + //cerr << min_dist << endl; + unsigned ntc = 0; + for (unsigned k = 0; k < rule.f_.size(); ++k) { + int fj = rule.f_[k]; + if (fj <= 0) + summed_min_dists += ants[ntc++]; + } + switch(scoring_method) { + case 0: + // binary scoring + feats->set_value(fid_ef, (summed_min_dists == 0)); + break; + // CHECK: for the remaining scoring methods, the question remains if + // min_dist or summed_min_dists should be used + case 1: + // linear scoring + feats->set_value(fid_ef, 1.0/(min_dist+1)); + break; + case 2: + // exponential scoring + feats->set_value(fid_ef, 1.0/exp(min_dist)); + break; + case 3: + // relative scoring + feats->set_value(fid_ef, (j-i)/((j-i) + min_dist)); + break; + default: + // binary scoring in case nothing is defined + feats->set_value(fid_ef, (summed_min_dists == 0)); + } + return min_dist; + } + + Array2D<WordID> src_tree; // src_tree(i,j) NT = type + unsigned int src_sent_len; + mutable Array2D<map<const TRule*, int> > fids_ef; // fires for fully lexicalized + int scoring_method; +}; + +ParseMatchFeatures::ParseMatchFeatures(const string& param) : + FeatureFunction(sizeof(WordID)) { + impl = new ParseMatchFeaturesImpl(param); +} + +ParseMatchFeatures::~ParseMatchFeatures() { + delete impl; + impl = NULL; +} + +void ParseMatchFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const { + int ants[8]; + for (unsigned i = 0; i < ant_contexts.size(); ++i) + ants[i] = *static_cast<const int*>(ant_contexts[i]); + + *static_cast<int*>(context) = + impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); +} + +void ParseMatchFeatures::PrepareForInput(const SentenceMetadata& smeta) { + impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); +} diff --git a/decoder/ff_parse_match.h b/decoder/ff_parse_match.h new file mode 100644 index 00000000..fa73481a --- /dev/null +++ b/decoder/ff_parse_match.h @@ -0,0 +1,25 @@ +#ifndef _FF_PARSE_MATCH_H_ +#define _FF_PARSE_MATCH_H_ + +#include "ff.h" +#include "hg.h" + +struct ParseMatchFeaturesImpl; + +class ParseMatchFeatures : public FeatureFunction { + public: + ParseMatchFeatures(const std::string& param); + ~ParseMatchFeatures(); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const; + virtual void PrepareForInput(const SentenceMetadata& smeta); + private: + ParseMatchFeaturesImpl* impl; +}; + +#endif diff --git a/decoder/ff_soft_syntax.cc b/decoder/ff_soft_syntax.cc new file mode 100644 index 00000000..9981fa45 --- /dev/null +++ b/decoder/ff_soft_syntax.cc @@ -0,0 +1,201 @@ +#include "ff_soft_syntax.h" + +#include <cstdio> +#include <sstream> +#include <stack> +#include <string> +#include <vector> + +#include "sentence_metadata.h" +#include "stringlib.h" +#include "array2d.h" +#include "filelib.h" + +using namespace std; + +// Implements the soft syntactic features described in +// Marton and Resnik (2008): "Soft Syntacitc Constraints for Hierarchical Phrase-Based Translation". +// Source trees must be represented in Penn Treebank format, +// e.g. (S (NP John) (VP (V left))). + +struct SoftSyntacticFeaturesImpl { + SoftSyntacticFeaturesImpl(const string& param) { + vector<string> labels = SplitOnWhitespace(param); + for (unsigned int i = 0; i < labels.size(); i++) + //cerr << "Labels: " << labels.at(i) << endl; + for (unsigned int i = 0; i < labels.size(); i++) { + string label = labels.at(i); + pair<string, string> feat_label; + feat_label.first = label.substr(0, label.size() - 1); + feat_label.second = label.at(label.size() - 1); + feat_labels.push_back(feat_label); + } +} + + void InitializeGrids(const string& tree, unsigned src_len) { + assert(tree.size() > 0); + //fids_cat.clear(); + fids_ef.clear(); + src_tree.clear(); + //fids_cat.resize(src_len, src_len + 1); + fids_ef.resize(src_len, src_len + 1); + src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); + ParseTreeString(tree, src_len); + } + + void ParseTreeString(const string& tree, unsigned src_len) { + stack<pair<int, WordID> > stk; // first = i, second = category + pair<int, WordID> cur_cat; cur_cat.first = -1; + unsigned i = 0; + unsigned p = 0; + //cerr << "String " << tree << endl; + while(p < tree.size()) { + const char cur = tree[p]; + if (cur == '(') { + stk.push(cur_cat); + ++p; + unsigned k = p + 1; + while (k < tree.size() && tree[k] != ' ') { ++k; } + cur_cat.first = i; + cur_cat.second = TD::Convert(tree.substr(p, k - p)); + //cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + p = k + 1; + } else if (cur == ')') { + unsigned k = p; + while (k < tree.size() && tree[k] == ')') { ++k; } + const unsigned num_closes = k - p; + for (unsigned ci = 0; ci < num_closes; ++ci) { + // cur_cat.second spans from cur_cat.first to i + //cerr << TD::Convert(cur_cat.second) << " from " << cur_cat.first << " to " << i << endl; + // NOTE: unary rule chains end up being labeled with the top-most category + src_tree(cur_cat.first, i) = cur_cat.second; + cur_cat = stk.top(); + stk.pop(); + } + p = k; + while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } + } else if (cur == ' ' || cur == '\t') { + cerr << "Unexpected whitespace in: " << tree << endl; + abort(); + } else { // terminal symbol + unsigned k = p + 1; + do { + while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } + // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + ++i; + assert(i <= src_len); + while (k < tree.size() && tree[k] == ' ') { ++k; } + p = k; + } while (p < tree.size() && tree[p] != ')'); + } + } + //cerr << "i=" << i << " src_len=" << src_len << endl; + assert(i == src_len); // make sure tree specified in src_tree is + // the same length as the source sentence + } + + WordID FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) { + //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; + const WordID lhs = src_tree(i,j); + string lhs_str = TD::Convert(lhs); + //cerr << "LHS: " << lhs_str << " from " << i << " to " << j << endl; + //cerr << "RULE :"<< rule << endl; + int& fid_ef = fids_ef(i,j)[&rule]; + for (unsigned int i = 0; i < feat_labels.size(); i++) { + ostringstream os; + string label = feat_labels.at(i).first; + //cerr << "This Label: " << label << endl; + char feat_type = (char) feat_labels.at(i).second.c_str()[0]; + //cerr << "feat_type: " << feat_type << endl; + switch(feat_type) { + case '2': + if (lhs_str.compare(label) == 0) { + os << "SYN:" << label << "_conform"; + } + else { + os << "SYN:" << label << "_cross"; + } + fid_ef = FD::Convert(os.str()); + if (fid_ef > 0) { + //cerr << "Feature :" << os.str() << endl; + feats->set_value(fid_ef, 1.0); + } + break; + case '_': + os << "SYN:" << label; + fid_ef = FD::Convert(os.str()); + if (lhs_str.compare(label) == 0) { + if (fid_ef > 0) { + //cerr << "Feature: " << os.str() << endl; + feats->set_value(fid_ef, 1.0); + } + } + else { + if (fid_ef > 0) { + //cerr << "Feature: " << os.str() << endl; + feats->set_value(fid_ef, -1.0); + } + } + break; + case '+': + if (lhs_str.compare(label) == 0) { + os << "SYN:" << label << "_conform"; + fid_ef = FD::Convert(os.str()); + if (fid_ef > 0) { + //cerr << "Feature: " << os.str() << endl; + feats->set_value(fid_ef, 1.0); + } + } + break; + case '-': + //cerr << "-" << endl; + if (lhs_str.compare(label) != 0) { + os << "SYN:" << label << "_cross"; + fid_ef = FD::Convert(os.str()); + if (fid_ef > 0) { + //cerr << "Feature :" << os.str() << endl; + feats->set_value(fid_ef, 1.0); + } + } + break; + os.clear(); + os.str(""); + } + //cerr << "Feature: " << os.str() << endl; + //cerr << endl; + } + return lhs; + } + + Array2D<WordID> src_tree; // src_tree(i,j) NT = type + mutable Array2D<map<const TRule*, int> > fids_ef; // fires for fully lexicalized + vector<pair<string, string> > feat_labels; +}; + +SoftSyntacticFeatures::SoftSyntacticFeatures(const string& param) : + FeatureFunction(sizeof(WordID)) { + impl = new SoftSyntacticFeaturesImpl(param); +} + +SoftSyntacticFeatures::~SoftSyntacticFeatures() { + delete impl; + impl = NULL; +} + +void SoftSyntacticFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const { + WordID ants[8]; + for (unsigned i = 0; i < ant_contexts.size(); ++i) + ants[i] = *static_cast<const WordID*>(ant_contexts[i]); + + *static_cast<WordID*>(context) = + impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); +} + +void SoftSyntacticFeatures::PrepareForInput(const SentenceMetadata& smeta) { + impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); +} diff --git a/decoder/ff_soft_syntax.h b/decoder/ff_soft_syntax.h new file mode 100644 index 00000000..79352f49 --- /dev/null +++ b/decoder/ff_soft_syntax.h @@ -0,0 +1,27 @@ +#ifndef _FF_SOFTSYNTAX_H_ +#define _FF_SOFTSYNTAX_H_ + +#include "ff.h" +#include "hg.h" + +struct SoftSyntacticFeaturesImpl; + +class SoftSyntacticFeatures : public FeatureFunction { + public: + SoftSyntacticFeatures(const std::string& param); + ~SoftSyntacticFeatures(); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const; + virtual void PrepareForInput(const SentenceMetadata& smeta); + private: + SoftSyntacticFeaturesImpl* impl; +}; + + + +#endif diff --git a/decoder/ff_soft_syntax2.cc b/decoder/ff_soft_syntax2.cc new file mode 100644 index 00000000..121bc39b --- /dev/null +++ b/decoder/ff_soft_syntax2.cc @@ -0,0 +1,234 @@ +#include "ff_soft_syntax2.h" + +#include <cstdio> +#include <sstream> +#include <stack> +#include <string> +#include <vector> + +#include "sentence_metadata.h" +#include "stringlib.h" +#include "array2d.h" +#include "filelib.h" + +using namespace std; + +// Implements the soft syntactic features described in +// Marton and Resnik (2008): "Soft Syntacitc Constraints for Hierarchical Phrase-Based Translation". +// Source trees must be represented in Penn Treebank format, +// e.g. (S (NP John) (VP (V left))). + +struct SoftSyntacticFeatures2Impl { + SoftSyntacticFeatures2Impl(const string& param) { + vector<string> labels = SplitOnWhitespace(param); + //for (unsigned int i = 0; i < labels.size(); i++) + //cerr << "Labels: " << labels.at(i) << endl; + for (unsigned int i = 0; i < labels.size(); i++) { + string label = labels.at(i); + pair<string, string> feat_label; + feat_label.first = label.substr(0, label.size() - 1); + feat_label.second = label.at(label.size() - 1); + feat_labels.push_back(feat_label); + } + } + + void InitializeGrids(const string& tree, unsigned src_len) { + assert(tree.size() > 0); + //fids_cat.clear(); + fids_ef.clear(); + src_tree.clear(); + //fids_cat.resize(src_len, src_len + 1); + fids_ef.resize(src_len, src_len + 1); + src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); + ParseTreeString(tree, src_len); + } + + void ParseTreeString(const string& tree, unsigned src_len) { + stack<pair<int, WordID> > stk; // first = i, second = category + pair<int, WordID> cur_cat; cur_cat.first = -1; + unsigned i = 0; + unsigned p = 0; + //cerr << "String " << tree << endl; + while(p < tree.size()) { + const char cur = tree[p]; + if (cur == '(') { + stk.push(cur_cat); + ++p; + unsigned k = p + 1; + while (k < tree.size() && tree[k] != ' ') { ++k; } + cur_cat.first = i; + cur_cat.second = TD::Convert(tree.substr(p, k - p)); + //cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + p = k + 1; + } else if (cur == ')') { + unsigned k = p; + while (k < tree.size() && tree[k] == ')') { ++k; } + const unsigned num_closes = k - p; + for (unsigned ci = 0; ci < num_closes; ++ci) { + // cur_cat.second spans from cur_cat.first to i + //cerr << TD::Convert(cur_cat.second) << " from " << cur_cat.first << " to " << i << endl; + // NOTE: unary rule chains end up being labeled with the top-most category + src_tree(cur_cat.first, i) = cur_cat.second; + cur_cat = stk.top(); + stk.pop(); + } + p = k; + while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } + } else if (cur == ' ' || cur == '\t') { + cerr << "Unexpected whitespace in: " << tree << endl; + abort(); + } else { // terminal symbol + unsigned k = p + 1; + do { + while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } + // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + ++i; + assert(i <= src_len); + while (k < tree.size() && tree[k] == ' ') { ++k; } + p = k; + } while (p < tree.size() && tree[p] != ')'); + } + } + //cerr << "i=" << i << " src_len=" << src_len << endl; + assert(i == src_len); // make sure tree specified in src_tree is + // the same length as the source sentence + } + + WordID FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) { + //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; + const WordID lhs = src_tree(i,j); + string lhs_str = TD::Convert(lhs); + //cerr << "LHS: " << lhs_str << " from " << i << " to " << j << endl; + //cerr << "RULE :"<< rule << endl; + int& fid_ef = fids_ef(i,j)[&rule]; + string lhs_to_str = TD::Convert(lhs); + int min_dist; + string min_dist_label; + if (lhs_to_str.compare("XX") != 0) { + min_dist = 0; + min_dist_label = lhs_to_str; + } + else { + int ok = 0; + for (unsigned int k = 1; k < (j - i); k++) { + min_dist = k; + for (unsigned int l = 0; l <= k; l++) { + int l_add = i-l; + int r_add = j+(k-l); + if ((l_add < src_tree.width() && r_add < src_tree.height()) && (TD::Convert(src_tree(l_add, r_add)).compare("XX") != 0)) { + ok = 1; + min_dist_label = (TD::Convert(src_tree(l_add, r_add))); + break; + } + else { + int l_rem= i+l; + int r_rem = j-(k-l); + if ((l_rem < src_tree.width() && r_rem < src_tree.height()) && TD::Convert(src_tree(l_rem, r_rem)).compare("XX") != 0) { + ok = 1; + min_dist_label = (TD::Convert(src_tree(l_rem, r_rem))); + break; + } + } + } + if (ok) break; + } + } + //cerr << "SPAN: " << i << " " << j << endl; + //cerr << "MINDIST: " << min_dist << endl; + //cerr << "MINDISTLABEL: " << min_dist_label << endl; + for (unsigned int i = 0; i < feat_labels.size(); i++) { + ostringstream os; + string label = feat_labels.at(i).first; + //cerr << "This Label: " << label << endl; + char feat_type = (char) feat_labels.at(i).second.c_str()[0]; + //cerr << "feat_type: " << feat_type << endl; + switch(feat_type) { + case '2': + if (min_dist_label.compare(label) == 0) { + if (min_dist == 0) { + os << "SYN:" << label << "_conform"; + } + else { + os << "SYN:" << label << "_cross"; + } + fid_ef = FD::Convert(os.str()); + //cerr << "Feature :" << os.str() << endl; + feats->set_value(fid_ef, 1.0); + } + break; + case '_': + os << "SYN:" << label; + fid_ef = FD::Convert(os.str()); + if (min_dist_label.compare(label) == 0) { + //cerr << "Feature: " << os.str() << endl; + if (min_dist == 0) { + feats->set_value(fid_ef, 1.0); + } + else { + //cerr << "Feature: " << os.str() << endl; + feats->set_value(fid_ef, -1.0); + } + } + break; + case '+': + if (min_dist_label.compare(label) == 0) { + os << "SYN:" << label << "_conform"; + fid_ef = FD::Convert(os.str()); + if (min_dist == 0) { + //cerr << "Feature: " << os.str() << endl; + feats->set_value(fid_ef, 1.0); + } + } + break; + case '-': + //cerr << "-" << endl; + if (min_dist_label.compare(label) != 0) { + os << "SYN:" << label << "_cross"; + fid_ef = FD::Convert(os.str()); + if (min_dist > 0) { + //cerr << "Feature :" << os.str() << endl; + feats->set_value(fid_ef, 1.0); + } + } + break; + os.clear(); + os.str(""); + } + //cerr << "FEATURE: " << os.str() << endl; + //cerr << endl; + } + return lhs; + } + + Array2D<WordID> src_tree; // src_tree(i,j) NT = type + mutable Array2D<map<const TRule*, int> > fids_ef; // fires for fully lexicalized + vector<pair<string, string> > feat_labels; +}; + +SoftSyntacticFeatures2::SoftSyntacticFeatures2(const string& param) : + FeatureFunction(sizeof(WordID)) { + impl = new SoftSyntacticFeatures2Impl(param); +} + +SoftSyntacticFeatures2::~SoftSyntacticFeatures2() { + delete impl; + impl = NULL; +} + +void SoftSyntacticFeatures2::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const { + WordID ants[8]; + for (unsigned i = 0; i < ant_contexts.size(); ++i) + ants[i] = *static_cast<const WordID*>(ant_contexts[i]); + + *static_cast<WordID*>(context) = + impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); +} + +void SoftSyntacticFeatures2::PrepareForInput(const SentenceMetadata& smeta) { + impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); +} diff --git a/decoder/ff_soft_syntax2.h b/decoder/ff_soft_syntax2.h new file mode 100644 index 00000000..4de91d86 --- /dev/null +++ b/decoder/ff_soft_syntax2.h @@ -0,0 +1,27 @@ +#ifndef _FF_SOFTSYNTAX2_H_ +#define _FF_SOFTSYNTAX2_H_ + +#include "ff.h" +#include "hg.h" + +struct SoftSyntacticFeatures2Impl; + +class SoftSyntacticFeatures2 : public FeatureFunction { + public: + SoftSyntacticFeatures2(const std::string& param); + ~SoftSyntacticFeatures2(); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const; + virtual void PrepareForInput(const SentenceMetadata& smeta); + private: + SoftSyntacticFeatures2Impl* impl; +}; + + + +#endif diff --git a/decoder/ff_source_syntax2.cc b/decoder/ff_source_syntax2.cc new file mode 100644 index 00000000..08ece917 --- /dev/null +++ b/decoder/ff_source_syntax2.cc @@ -0,0 +1,159 @@ +#include "ff_source_syntax2.h" + +#include <sstream> +#include <stack> +#include <string> +#include <tr1/unordered_set> + +#include "sentence_metadata.h" +#include "array2d.h" +#include "filelib.h" + +using namespace std; + +// implements the source side syntax features described in Blunsom et al. (EMNLP 2008) +// source trees must be represented in Penn Treebank format, e.g. +// (S (NP John) (VP (V left))) + +struct SourceSyntaxFeatures2Impl { + SourceSyntaxFeatures2Impl(const string& param) { + if (!(param.compare("") == 0)) { + string triggered_features_fn = param; + ReadFile triggered_features(triggered_features_fn); + string in; + while(getline(*triggered_features, in)) { + feature_filter.insert(FD::Convert(in)); + } + } + } + + void InitializeGrids(const string& tree, unsigned src_len) { + assert(tree.size() > 0); + //fids_cat.clear(); + fids_ef.clear(); + src_tree.clear(); + //fids_cat.resize(src_len, src_len + 1); + fids_ef.resize(src_len, src_len + 1); + src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); + ParseTreeString(tree, src_len); + } + + void ParseTreeString(const string& tree, unsigned src_len) { + //cerr << "TREE: " << tree << endl; + stack<pair<int, WordID> > stk; // first = i, second = category + pair<int, WordID> cur_cat; cur_cat.first = -1; + unsigned i = 0; + unsigned p = 0; + while(p < tree.size()) { + const char cur = tree[p]; + if (cur == '(') { + stk.push(cur_cat); + ++p; + unsigned k = p + 1; + while (k < tree.size() && tree[k] != ' ') { ++k; } + cur_cat.first = i; + cur_cat.second = TD::Convert(tree.substr(p, k - p)); + // cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + p = k + 1; + } else if (cur == ')') { + unsigned k = p; + while (k < tree.size() && tree[k] == ')') { ++k; } + const unsigned num_closes = k - p; + for (unsigned ci = 0; ci < num_closes; ++ci) { + src_tree(cur_cat.first, i) = cur_cat.second; + cur_cat = stk.top(); + stk.pop(); + } + p = k; + while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } + } else if (cur == ' ' || cur == '\t') { + cerr << "Unexpected whitespace in: " << tree << endl; + abort(); + } else { // terminal symbol + unsigned k = p + 1; + do { + while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } + // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + ++i; + assert(i <= src_len); + while (k < tree.size() && tree[k] == ' ') { ++k; } + p = k; + } while (p < tree.size() && tree[p] != ')'); + } + //cerr << "i=" << i << " src_len=" << src_len << endl; + } + //cerr << "i=" << i << " src_len=" << src_len << endl; + assert(i == src_len); // make sure tree specified in src_tree is + // the same length as the source sentence + } + + WordID FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) { + //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; + const WordID lhs = src_tree(i,j); + int& fid_ef = fids_ef(i,j)[&rule]; + ostringstream os; + os << "SYN:" << TD::Convert(lhs); + os << ':'; + unsigned ntc = 0; + for (unsigned k = 0; k < rule.f_.size(); ++k) { + int fj = rule.f_[k]; + if (k > 0 && fj <= 0) os << '_'; + if (fj <= 0) { + os << '[' << TD::Convert(ants[ntc++]) << ']'; + } /*else { + os << TD::Convert(fj); + }*/ + } + os << ':'; + for (unsigned k = 0; k < rule.e_.size(); ++k) { + const int ei = rule.e_[k]; + if (k > 0) os << '_'; + if (ei <= 0) + os << '[' << (1-ei) << ']'; + else + os << TD::Convert(ei); + } + fid_ef = FD::Convert(os.str()); + //cerr << "FEATURE: " << os.str() << endl; + //cerr << "FID_EF: " << fid_ef << endl; + if (feature_filter.find(fid_ef) != feature_filter.end()) { + cerr << "SYN-Feature was trigger more than once on training set." << endl; + feats->set_value(fid_ef, 1.0); + } + else cerr << "SYN-Feature was triggered less than once on training set." << endl; + return lhs; + } + + Array2D<WordID> src_tree; // src_tree(i,j) NT = type + mutable Array2D<map<const TRule*, int> > fids_ef; // fires for fully lexicalized + tr1::unordered_set<int> feature_filter; + +}; + +SourceSyntaxFeatures2::SourceSyntaxFeatures2(const string& param) : + FeatureFunction(sizeof(WordID)) { + impl = new SourceSyntaxFeatures2Impl(param); +} + +SourceSyntaxFeatures2::~SourceSyntaxFeatures2() { + delete impl; + impl = NULL; +} + +void SourceSyntaxFeatures2::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const { + WordID ants[8]; + for (unsigned i = 0; i < ant_contexts.size(); ++i) + ants[i] = *static_cast<const WordID*>(ant_contexts[i]); + + *static_cast<WordID*>(context) = + impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); +} + +void SourceSyntaxFeatures2::PrepareForInput(const SentenceMetadata& smeta) { + impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); +} diff --git a/decoder/ff_source_syntax2.h b/decoder/ff_source_syntax2.h new file mode 100644 index 00000000..b6b7dc3d --- /dev/null +++ b/decoder/ff_source_syntax2.h @@ -0,0 +1,25 @@ +#ifndef _FF_SOURCE_TOOLS2_H_ +#define _FF_SOURCE_TOOLS2_H_ + +#include "ff.h" +#include "hg.h" + +struct SourceSyntaxFeatures2Impl; + +class SourceSyntaxFeatures2 : public FeatureFunction { + public: + SourceSyntaxFeatures2(const std::string& param); + ~SourceSyntaxFeatures2(); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const; + virtual void PrepareForInput(const SentenceMetadata& smeta); + private: + SourceSyntaxFeatures2Impl* impl; +}; + +#endif diff --git a/decoder/ff_source_syntax2_p.cc b/decoder/ff_source_syntax2_p.cc new file mode 100644 index 00000000..dfa791ea --- /dev/null +++ b/decoder/ff_source_syntax2_p.cc @@ -0,0 +1,166 @@ +#include "ff_source_syntax2_p.h" + +#include <sstream> +#include <stack> +#include <string> +#include <tr1/unordered_set> + +#include "sentence_metadata.h" +#include "array2d.h" +#include "filelib.h" + +using namespace std; + +// implements the source side syntax features described in Blunsom et al. (EMNLP 2008) +// source trees must be represented in Penn Treebank format, e.g. +// (S (NP John) (VP (V left))) + +struct PSourceSyntaxFeatures2Impl { + PSourceSyntaxFeatures2Impl(const string& param) { + if (param.compare("") != 0) { + string triggered_features_fn = param; + ReadFile triggered_features(triggered_features_fn); + string in; + while(getline(*triggered_features, in)) { + feature_filter.insert(FD::Convert(in)); + } + } + /*cerr << "find(\"One\") == " << boolalpha << (table.find("One") != table.end()) << endl; + cerr << "find(\"Three\") == " << boolalpha << (table.find("Three") != table.end()) << endl;*/ + } + + void InitializeGrids(const string& tree, unsigned src_len) { + assert(tree.size() > 0); + //fids_cat.clear(); + fids_ef.clear(); + src_tree.clear(); + //fids_cat.resize(src_len, src_len + 1); + fids_ef.resize(src_len, src_len + 1); + src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); + ParseTreeString(tree, src_len); + } + + void ParseTreeString(const string& tree, unsigned src_len) { + //cerr << "TREE: " << tree << endl; + stack<pair<int, WordID> > stk; // first = i, second = category + pair<int, WordID> cur_cat; cur_cat.first = -1; + unsigned i = 0; + unsigned p = 0; + while(p < tree.size()) { + const char cur = tree[p]; + if (cur == '(') { + stk.push(cur_cat); + ++p; + unsigned k = p + 1; + while (k < tree.size() && tree[k] != ' ') { ++k; } + cur_cat.first = i; + cur_cat.second = TD::Convert(tree.substr(p, k - p)); + // cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + p = k + 1; + } else if (cur == ')') { + unsigned k = p; + while (k < tree.size() && tree[k] == ')') { ++k; } + const unsigned num_closes = k - p; + for (unsigned ci = 0; ci < num_closes; ++ci) { + src_tree(cur_cat.first, i) = cur_cat.second; + cur_cat = stk.top(); + stk.pop(); + } + p = k; + while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } + } else if (cur == ' ' || cur == '\t') { + cerr << "Unexpected whitespace in: " << tree << endl; + abort(); + } else { // terminal symbol + unsigned k = p + 1; + do { + while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } + // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + ++i; + assert(i <= src_len); + while (k < tree.size() && tree[k] == ' ') { ++k; } + p = k; + } while (p < tree.size() && tree[p] != ')'); + } + //cerr << "i=" << i << " src_len=" << src_len << endl; + } + //cerr << "i=" << i << " src_len=" << src_len << endl; + assert(i == src_len); // make sure tree specified in src_tree is + // the same length as the source sentence + } + + WordID FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) { + //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; + const WordID lhs = src_tree(i,j); + int& fid_ef = fids_ef(i,j)[&rule]; + ostringstream os; + os << "SYN:" << TD::Convert(lhs); + os << ':'; + unsigned ntc = 0; + for (unsigned k = 0; k < rule.f_.size(); ++k) { + int fj = rule.f_[k]; + if (k > 0 && fj <= 0) os << '_'; + if (fj <= 0) { + os << '[' << TD::Convert(ants[ntc++]) << ']'; + } /*else { + os << TD::Convert(fj); + }*/ + } + os << ':'; + for (unsigned k = 0; k < rule.e_.size(); ++k) { + const int ei = rule.e_[k]; + if (k > 0) os << '_'; + if (ei <= 0) + os << '[' << (1-ei) << ']'; + else + os << TD::Convert(ei); + } + fid_ef = FD::Convert(os.str()); + //cerr << "FEATURE: " << os.str() << endl; + //cerr << "FID_EF: " << fid_ef << endl; + if (feature_filter.size() > 0) { + if (feature_filter.find(fid_ef) != feature_filter.end()) { + //cerr << "SYN-Feature was trigger more than once on training set." << endl; + feats->set_value(fid_ef, 1.0); + } + //else cerr << "SYN-Feature was triggered less than once on training set." << endli; + } + else { + feats->set_value(fid_ef, 1.0); + } + return lhs; + } + + Array2D<WordID> src_tree; // src_tree(i,j) NT = type + mutable Array2D<map<const TRule*, int> > fids_ef; // fires for fully lexicalized + tr1::unordered_set<int> feature_filter; + +}; + +PSourceSyntaxFeatures2::PSourceSyntaxFeatures2(const string& param) : + FeatureFunction(sizeof(WordID)) { + impl = new PSourceSyntaxFeatures2Impl(param); +} + +PSourceSyntaxFeatures2::~PSourceSyntaxFeatures2() { + delete impl; + impl = NULL; +} + +void PSourceSyntaxFeatures2::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const { + WordID ants[8]; + for (unsigned i = 0; i < ant_contexts.size(); ++i) + ants[i] = *static_cast<const WordID*>(ant_contexts[i]); + + *static_cast<WordID*>(context) = + impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); +} + +void PSourceSyntaxFeatures2::PrepareForInput(const SentenceMetadata& smeta) { + impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); +} diff --git a/decoder/ff_source_syntax2_p.h b/decoder/ff_source_syntax2_p.h new file mode 100644 index 00000000..d56ecab0 --- /dev/null +++ b/decoder/ff_source_syntax2_p.h @@ -0,0 +1,25 @@ +#ifndef _FF_SOURCE_TOOLS2_H_ +#define _FF_SOURCE_TOOLS2_H_ + +#include "ff.h" +#include "hg.h" + +struct PSourceSyntaxFeatures2Impl; + +class PSourceSyntaxFeatures2 : public FeatureFunction { + public: + PSourceSyntaxFeatures2(const std::string& param); + ~PSourceSyntaxFeatures2(); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const; + virtual void PrepareForInput(const SentenceMetadata& smeta); + private: + PSourceSyntaxFeatures2Impl* impl; +}; + +#endif diff --git a/decoder/ff_source_syntax_p.cc b/decoder/ff_source_syntax_p.cc new file mode 100644 index 00000000..cd081544 --- /dev/null +++ b/decoder/ff_source_syntax_p.cc @@ -0,0 +1,245 @@ +#include "ff_source_syntax_p.h" + +#include <sstream> +#include <stack> +#include <tr1/unordered_set> + +#include "sentence_metadata.h" +#include "array2d.h" +#include "filelib.h" + +using namespace std; + +// implements the source side syntax features described in Blunsom et al. (EMNLP 2008) +// source trees must be represented in Penn Treebank format, e.g. +// (S (NP John) (VP (V left))) + +// log transform to make long spans cluster together +// but preserve differences +inline int SpanSizeTransform(unsigned span_size) { + if (!span_size) return 0; + return static_cast<int>(log(span_size+1) / log(1.39)) - 1; +} + +struct PSourceSyntaxFeaturesImpl { + PSourceSyntaxFeaturesImpl() {} + + PSourceSyntaxFeaturesImpl(const string& param) { + if (!(param.compare("") == 0)) { + string triggered_features_fn = param; + ReadFile triggered_features(triggered_features_fn); + string in; + while(getline(*triggered_features, in)) { + feature_filter.insert(FD::Convert(in)); + } + } + } + + void InitializeGrids(const string& tree, unsigned src_len) { + assert(tree.size() > 0); + //fids_cat.clear(); + fids_ef.clear(); + src_tree.clear(); + //fids_cat.resize(src_len, src_len + 1); + fids_ef.resize(src_len, src_len + 1); + src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); + ParseTreeString(tree, src_len); + } + + void ParseTreeString(const string& tree, unsigned src_len) { + stack<pair<int, WordID> > stk; // first = i, second = category + pair<int, WordID> cur_cat; cur_cat.first = -1; + unsigned i = 0; + unsigned p = 0; + while(p < tree.size()) { + const char cur = tree[p]; + if (cur == '(') { + stk.push(cur_cat); + ++p; + unsigned k = p + 1; + while (k < tree.size() && tree[k] != ' ') { ++k; } + cur_cat.first = i; + cur_cat.second = TD::Convert(tree.substr(p, k - p)); + // cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + p = k + 1; + } else if (cur == ')') { + unsigned k = p; + while (k < tree.size() && tree[k] == ')') { ++k; } + const unsigned num_closes = k - p; + for (unsigned ci = 0; ci < num_closes; ++ci) { + // cur_cat.second spans from cur_cat.first to i + // cerr << TD::Convert(cur_cat.second) << " from " << cur_cat.first << " to " << i << endl; + // NOTE: unary rule chains end up being labeled with the top-most category + src_tree(cur_cat.first, i) = cur_cat.second; + cur_cat = stk.top(); + stk.pop(); + } + p = k; + while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } + } else if (cur == ' ' || cur == '\t') { + cerr << "Unexpected whitespace in: " << tree << endl; + abort(); + } else { // terminal symbol + unsigned k = p + 1; + do { + while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } + // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; + ++i; + assert(i <= src_len); + while (k < tree.size() && tree[k] == ' ') { ++k; } + p = k; + } while (p < tree.size() && tree[p] != ')'); + } + } + // cerr << "i=" << i << " src_len=" << src_len << endl; + assert(i == src_len); // make sure tree specified in src_tree is + // the same length as the source sentence + } + + WordID FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) { + //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; + const WordID lhs = src_tree(i,j); + //int& fid_cat = fids_cat(i,j); + int& fid_ef = fids_ef(i,j)[&rule]; + if (fid_ef <= 0) { + ostringstream os; + //ostringstream os2; + os << "SYN:" << TD::Convert(lhs); + //os2 << "SYN:" << TD::Convert(lhs) << '_' << SpanSizeTransform(j - i); + //fid_cat = FD::Convert(os2.str()); + os << ':'; + unsigned ntc = 0; + for (unsigned k = 0; k < rule.f_.size(); ++k) { + if (k > 0) os << '_'; + int fj = rule.f_[k]; + if (fj <= 0) { + os << '[' << TD::Convert(ants[ntc++]) << ']'; + } else { + os << TD::Convert(fj); + } + } + os << ':'; + for (unsigned k = 0; k < rule.e_.size(); ++k) { + const int ei = rule.e_[k]; + if (k > 0) os << '_'; + if (ei <= 0) + os << '[' << (1-ei) << ']'; + else + os << TD::Convert(ei); + } + fid_ef = FD::Convert(os.str()); + } + //if (fid_cat > 0) + // feats->set_value(fid_cat, 1.0); + if (fid_ef > 0 && (feature_filter.find(fid_ef) != feature_filter.end())) + feats->set_value(fid_ef, 1.0); + return lhs; + } + + Array2D<WordID> src_tree; // src_tree(i,j) NT = type + // mutable Array2D<int> fids_cat; // this tends to overfit baddly + mutable Array2D<map<const TRule*, int> > fids_ef; // fires for fully lexicalized + tr1::unordered_set<int> feature_filter; +}; + +PSourceSyntaxFeatures::PSourceSyntaxFeatures(const string& param) : + FeatureFunction(sizeof(WordID)) { + impl = new PSourceSyntaxFeaturesImpl(param); +} + +PSourceSyntaxFeatures::~PSourceSyntaxFeatures() { + delete impl; + impl = NULL; +} + +void PSourceSyntaxFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const { + WordID ants[8]; + for (unsigned i = 0; i < ant_contexts.size(); ++i) + ants[i] = *static_cast<const WordID*>(ant_contexts[i]); + + *static_cast<WordID*>(context) = + impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); +} + +void PSourceSyntaxFeatures::PrepareForInput(const SentenceMetadata& smeta) { + impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); +} + +struct PSourceSpanSizeFeaturesImpl { + PSourceSpanSizeFeaturesImpl() {} + + void InitializeGrids(unsigned src_len) { + fids.clear(); + fids.resize(src_len, src_len + 1); + } + + int FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector<double>* feats) { + if (rule.Arity() > 0) { + int& fid = fids(i,j)[&rule]; + if (fid <= 0) { + ostringstream os; + os << "SSS:"; + unsigned ntc = 0; + for (unsigned k = 0; k < rule.f_.size(); ++k) { + if (k > 0) os << '_'; + int fj = rule.f_[k]; + if (fj <= 0) { + os << '[' << TD::Convert(-fj) << ants[ntc++] << ']'; + } else { + os << TD::Convert(fj); + } + } + os << ':'; + for (unsigned k = 0; k < rule.e_.size(); ++k) { + const int ei = rule.e_[k]; + if (k > 0) os << '_'; + if (ei <= 0) + os << '[' << (1-ei) << ']'; + else + os << TD::Convert(ei); + } + fid = FD::Convert(os.str()); + } + if (fid > 0) + feats->set_value(fid, 1.0); + } + return SpanSizeTransform(j - i); + } + + mutable Array2D<map<const TRule*, int> > fids; +}; + +PSourceSpanSizeFeatures::PSourceSpanSizeFeatures(const string& param) : + FeatureFunction(sizeof(char)) { + impl = new PSourceSpanSizeFeaturesImpl; +} + +PSourceSpanSizeFeatures::~PSourceSpanSizeFeatures() { + delete impl; + impl = NULL; +} + +void PSourceSpanSizeFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const { + int ants[8]; + for (unsigned i = 0; i < ant_contexts.size(); ++i) + ants[i] = *static_cast<const char*>(ant_contexts[i]); + + *static_cast<char*>(context) = + impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); +} + +void PSourceSpanSizeFeatures::PrepareForInput(const SentenceMetadata& smeta) { + impl->InitializeGrids(smeta.GetSourceLength()); +} + + diff --git a/decoder/ff_source_syntax_p.h b/decoder/ff_source_syntax_p.h new file mode 100644 index 00000000..2dd9094a --- /dev/null +++ b/decoder/ff_source_syntax_p.h @@ -0,0 +1,42 @@ +#ifndef _FF_SOURCE_TOOLS_H_ +#define _FF_SOURCE_TOOLS_H_ + +#include "ff.h" +#include "hg.h" + +struct PSourceSyntaxFeaturesImpl; + +class PSourceSyntaxFeatures : public FeatureFunction { + public: + PSourceSyntaxFeatures(const std::string& param); + ~PSourceSyntaxFeatures(); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const; + virtual void PrepareForInput(const SentenceMetadata& smeta); + private: + PSourceSyntaxFeaturesImpl* impl; +}; + +struct PSourceSpanSizeFeaturesImpl; +class PSourceSpanSizeFeatures : public FeatureFunction { + public: + PSourceSpanSizeFeatures(const std::string& param); + ~PSourceSpanSizeFeatures(); + protected: + virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, + const Hypergraph::Edge& edge, + const std::vector<const void*>& ant_contexts, + SparseVector<double>* features, + SparseVector<double>* estimated_features, + void* context) const; + virtual void PrepareForInput(const SentenceMetadata& smeta); + private: + PSourceSpanSizeFeaturesImpl* impl; +}; + +#endif diff --git a/training/dtrain/README.md b/training/dtrain/README.md index 2ab2f232..2bae6b48 100644 --- a/training/dtrain/README.md +++ b/training/dtrain/README.md @@ -17,6 +17,17 @@ To build only parts needed for dtrain do cd training/dtrain/; make ``` +Ideas +----- + * get approx_bleu to work? + * implement minibatches (Minibatch and Parallelization for Online Large Margin Structured Learning) + * learning rate 1/T? + * use an oracle? mira-like (model vs. BLEU), feature repr. of reference!? + * implement lc_bleu properly + * merge kbest lists of previous epochs (as MERT does) + * ``walk entire regularization path'' + * rerank after each update? + Running ------- See directories under test/ . diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc index 149f87d4..0ee2f124 100644 --- a/training/dtrain/dtrain.cc +++ b/training/dtrain/dtrain.cc @@ -1,4 +1,10 @@ #include "dtrain.h" +#include "score.h" +#include "kbestget.h" +#include "ksampler.h" +#include "pairsampling.h" + +using namespace dtrain; bool @@ -138,23 +144,23 @@ main(int argc, char** argv) string scorer_str = cfg["scorer"].as<string>(); LocalScorer* scorer; if (scorer_str == "bleu") { - scorer = dynamic_cast<BleuScorer*>(new BleuScorer); + scorer = static_cast<BleuScorer*>(new BleuScorer); } else if (scorer_str == "stupid_bleu") { - scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer); + scorer = static_cast<StupidBleuScorer*>(new StupidBleuScorer); } else if (scorer_str == "fixed_stupid_bleu") { - scorer = dynamic_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer); + scorer = static_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer); } else if (scorer_str == "smooth_bleu") { - scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer); + scorer = static_cast<SmoothBleuScorer*>(new SmoothBleuScorer); } else if (scorer_str == "sum_bleu") { - scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer); + scorer = static_cast<SumBleuScorer*>(new SumBleuScorer); } else if (scorer_str == "sumexp_bleu") { - scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer); + scorer = static_cast<SumExpBleuScorer*>(new SumExpBleuScorer); } else if (scorer_str == "sumwhatever_bleu") { - scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer); + scorer = static_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer); } else if (scorer_str == "approx_bleu") { - scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d)); + scorer = static_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d)); } else if (scorer_str == "lc_bleu") { - scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N)); + scorer = static_cast<LinearBleuScorer*>(new LinearBleuScorer(N)); } else { cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl; exit(1); @@ -166,9 +172,9 @@ main(int argc, char** argv) MT19937 rng; // random number generator, only for forest sampling HypSampler* observer; if (sample_from == "kbest") - observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type)); + observer = static_cast<KBestGetter*>(new KBestGetter(k, filter_type)); else - observer = dynamic_cast<KSampler*>(new KSampler(k, &rng)); + observer = static_cast<KSampler*>(new KSampler(k, &rng)); observer->SetScorer(scorer); // init weights @@ -360,6 +366,9 @@ main(int argc, char** argv) PROsampling(samples, pairs, pair_threshold, max_pairs); npairs += pairs.size(); + SparseVector<weight_t> lambdas_copy; + if (l1naive||l1clip||l1cumul) lambdas_copy = lambdas; + for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin(); it != pairs.end(); it++) { bool rank_error; @@ -369,7 +378,7 @@ main(int argc, char** argv) margin = std::numeric_limits<float>::max(); } else { rank_error = it->first.model <= it->second.model; - margin = fabs(fabs(it->first.model) - fabs(it->second.model)); + margin = fabs(it->first.model - it->second.model); if (!rank_error && margin < loss_margin) margin_violations++; } if (rank_error) rank_errors++; @@ -383,23 +392,26 @@ main(int argc, char** argv) } // l1 regularization - // please note that this penalizes _all_ weights - // (contrary to only the ones changed by the last update) - // after a _sentence_ (not after each example/pair) + // please note that this regularizations happen + // after a _sentence_ -- not after each example/pair! if (l1naive) { FastSparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { - it->second -= sign(it->second) * l1_reg; + if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { + it->second -= sign(it->second) * l1_reg; + } } } else if (l1clip) { FastSparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { - if (it->second != 0) { - weight_t v = it->second; - if (v > 0) { - it->second = max(0., v - l1_reg); - } else { - it->second = min(0., v + l1_reg); + if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { + if (it->second != 0) { + weight_t v = it->second; + if (v > 0) { + it->second = max(0., v - l1_reg); + } else { + it->second = min(0., v + l1_reg); + } } } } @@ -407,16 +419,18 @@ main(int argc, char** argv) weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input FastSparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { - if (it->second != 0) { - weight_t v = it->second; - weight_t penalized = 0.; - if (v > 0) { - penalized = max(0., v-(acc_penalty + cumulative_penalties.get(it->first))); - } else { - penalized = min(0., v+(acc_penalty - cumulative_penalties.get(it->first))); + if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { + if (it->second != 0) { + weight_t v = it->second; + weight_t penalized = 0.; + if (v > 0) { + penalized = max(0., v-(acc_penalty + cumulative_penalties.get(it->first))); + } else { + penalized = min(0., v+(acc_penalty - cumulative_penalties.get(it->first))); + } + it->second = penalized; + cumulative_penalties.set_value(it->first, cumulative_penalties.get(it->first)+penalized); } - it->second = penalized; - cumulative_penalties.set_value(it->first, cumulative_penalties.get(it->first)+penalized); } } } diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h index eb0b9f17..3981fb39 100644 --- a/training/dtrain/dtrain.h +++ b/training/dtrain/dtrain.h @@ -11,16 +11,19 @@ #include <boost/algorithm/string.hpp> #include <boost/program_options.hpp> -#include "ksampler.h" -#include "pairsampling.h" - -#include "filelib.h" - +#include "decoder.h" +#include "ff_register.h" +#include "sentence_metadata.h" +#include "verbose.h" +#include "viterbi.h" using namespace std; -using namespace dtrain; namespace po = boost::program_options; +namespace dtrain +{ + + inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids) { vector<string>::const_iterator it; @@ -42,17 +45,55 @@ inline string gettmpf(const string path, const string infix) return string(fn); } -inline void split_in(string& s, vector<string>& parts) +typedef double score_t; + +struct ScoredHyp { - unsigned f = 0; - for(unsigned i = 0; i < 3; i++) { - unsigned e = f; - f = s.find("\t", f+1); - if (e != 0) parts.push_back(s.substr(e+1, f-e-1)); - else parts.push_back(s.substr(0, f)); + vector<WordID> w; + SparseVector<double> f; + score_t model; + score_t score; + unsigned rank; +}; + +struct LocalScorer +{ + unsigned N_; + vector<score_t> w_; + + virtual score_t + Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0; + + virtual void Reset() {} // only for ApproxBleuScorer, LinearBleuScorer + + inline void + Init(unsigned N, vector<score_t> weights) + { + assert(N > 0); + N_ = N; + if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_); + else w_ = weights; } - s.erase(0, f+1); -} + + inline score_t + brevity_penalty(const unsigned hyp_len, const unsigned ref_len) + { + if (hyp_len > ref_len) return 1; + return exp(1 - (score_t)ref_len/hyp_len); + } +}; + +struct HypSampler : public DecoderObserver +{ + LocalScorer* scorer_; + vector<WordID>* ref_; + unsigned f_count_, sz_; + virtual vector<ScoredHyp>* GetSamples()=0; + inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; } + inline void SetRef(vector<WordID>& ref) { ref_ = &ref; } + inline unsigned get_f_count() { return f_count_; } + inline unsigned get_sz() { return sz_; } +}; struct HSReporter { @@ -88,5 +129,8 @@ inline T sign(T z) return z < 0 ? -1 : +1; } + +} // namespace + #endif diff --git a/training/dtrain/examples/parallelized/cdec.ini b/training/dtrain/examples/parallelized/cdec.ini index e43ba1c4..5773029a 100644 --- a/training/dtrain/examples/parallelized/cdec.ini +++ b/training/dtrain/examples/parallelized/cdec.ini @@ -4,7 +4,7 @@ intersection_strategy=cube_pruning cubepruning_pop_limit=200 scfg_max_span_limit=15 feature_function=WordPenalty -feature_function=KLanguageModel ../example/nc-wmt11.en.srilm.gz +feature_function=KLanguageModel ../standard//nc-wmt11.en.srilm.gz #feature_function=ArityPenalty #feature_function=CMR2008ReorderingFeatures #feature_function=Dwarf diff --git a/training/dtrain/examples/parallelized/dtrain.ini b/training/dtrain/examples/parallelized/dtrain.ini index f19ef891..0b0932d6 100644 --- a/training/dtrain/examples/parallelized/dtrain.ini +++ b/training/dtrain/examples/parallelized/dtrain.ini @@ -11,6 +11,4 @@ pair_sampling=XYX hi_lo=0.1 select_weights=last print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough -# newer version of the grammar extractor use different feature names: -#print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough decoder_config=cdec.ini diff --git a/training/dtrain/examples/parallelized/work/out.0.0 b/training/dtrain/examples/parallelized/work/out.0.0 index 7a00ed0f..c559dd4d 100644 --- a/training/dtrain/examples/parallelized/work/out.0.0 +++ b/training/dtrain/examples/parallelized/work/out.0.0 @@ -1,9 +1,9 @@ cdec cfg 'cdec.ini' Loading the LM will be faster if you build a binary file. -Reading ../example/nc-wmt11.en.srilm.gz +Reading ../standard//nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** -Seeding random number sequence to 3121929377 +Seeding random number sequence to 405292278 dtrain Parameters: @@ -16,6 +16,7 @@ Parameters: learning rate 0.0001 gamma 0 loss margin 1 + faster perceptron 0 pairs 'XYX' hi lo 0.1 pair threshold 0 @@ -51,11 +52,11 @@ WEIGHTS non0 feature count: 12 avg list sz: 100 avg f count: 11.32 -(time 0.37 min, 4.4 s/S) +(time 0.35 min, 4.2 s/S) Writing weights file to 'work/weights.0.0' ... done --- Best iteration: 1 [SCORE 'stupid_bleu'=0.17521]. -This took 0.36667 min. +This took 0.35 min. diff --git a/training/dtrain/examples/parallelized/work/out.0.1 b/training/dtrain/examples/parallelized/work/out.0.1 index e2bd6649..8bc7ea9c 100644 --- a/training/dtrain/examples/parallelized/work/out.0.1 +++ b/training/dtrain/examples/parallelized/work/out.0.1 @@ -1,9 +1,9 @@ cdec cfg 'cdec.ini' Loading the LM will be faster if you build a binary file. -Reading ../example/nc-wmt11.en.srilm.gz +Reading ../standard//nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** -Seeding random number sequence to 2767202922 +Seeding random number sequence to 43859692 dtrain Parameters: @@ -16,6 +16,7 @@ Parameters: learning rate 0.0001 gamma 0 loss margin 1 + faster perceptron 0 pairs 'XYX' hi lo 0.1 pair threshold 0 @@ -52,11 +53,11 @@ WEIGHTS non0 feature count: 12 avg list sz: 100 avg f count: 10.496 -(time 0.32 min, 3.8 s/S) +(time 0.35 min, 4.2 s/S) Writing weights file to 'work/weights.0.1' ... done --- Best iteration: 1 [SCORE 'stupid_bleu'=0.26638]. -This took 0.31667 min. +This took 0.35 min. diff --git a/training/dtrain/examples/parallelized/work/out.1.0 b/training/dtrain/examples/parallelized/work/out.1.0 index 6e790e38..65d1e7dc 100644 --- a/training/dtrain/examples/parallelized/work/out.1.0 +++ b/training/dtrain/examples/parallelized/work/out.1.0 @@ -1,9 +1,9 @@ cdec cfg 'cdec.ini' Loading the LM will be faster if you build a binary file. -Reading ../example/nc-wmt11.en.srilm.gz +Reading ../standard//nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** -Seeding random number sequence to 1432415010 +Seeding random number sequence to 4126799437 dtrain Parameters: @@ -16,6 +16,7 @@ Parameters: learning rate 0.0001 gamma 0 loss margin 1 + faster perceptron 0 pairs 'XYX' hi lo 0.1 pair threshold 0 @@ -51,11 +52,11 @@ WEIGHTS non0 feature count: 11 avg list sz: 100 avg f count: 11.814 -(time 0.45 min, 5.4 s/S) +(time 0.43 min, 5.2 s/S) Writing weights file to 'work/weights.1.0' ... done --- Best iteration: 1 [SCORE 'stupid_bleu'=0.10863]. -This took 0.45 min. +This took 0.43333 min. diff --git a/training/dtrain/examples/parallelized/work/out.1.1 b/training/dtrain/examples/parallelized/work/out.1.1 index 0b984761..f479fbbc 100644 --- a/training/dtrain/examples/parallelized/work/out.1.1 +++ b/training/dtrain/examples/parallelized/work/out.1.1 @@ -1,9 +1,9 @@ cdec cfg 'cdec.ini' Loading the LM will be faster if you build a binary file. -Reading ../example/nc-wmt11.en.srilm.gz +Reading ../standard//nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** -Seeding random number sequence to 1771918374 +Seeding random number sequence to 2112412848 dtrain Parameters: @@ -16,6 +16,7 @@ Parameters: learning rate 0.0001 gamma 0 loss margin 1 + faster perceptron 0 pairs 'XYX' hi lo 0.1 pair threshold 0 @@ -52,11 +53,11 @@ WEIGHTS non0 feature count: 12 avg list sz: 100 avg f count: 11.224 -(time 0.42 min, 5 s/S) +(time 0.45 min, 5.4 s/S) Writing weights file to 'work/weights.1.1' ... done --- Best iteration: 1 [SCORE 'stupid_bleu'=0.13169]. -This took 0.41667 min. +This took 0.45 min. diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini index e1072d30..23e94285 100644 --- a/training/dtrain/examples/standard/dtrain.ini +++ b/training/dtrain/examples/standard/dtrain.ini @@ -10,15 +10,15 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr stop_after=10 # stop epoch after 10 inputs # interesting stuff -epochs=2 # run over input 2 times -k=100 # use 100best lists -N=4 # optimize (approx) BLEU4 -scorer=stupid_bleu # use 'stupid' BLEU+1 -learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) -gamma=0 # use SVM reg -sample_from=kbest # use kbest lists (as opposed to forest) -filter=uniq # only unique entries in kbest (surface form) -pair_sampling=XYX # -hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here -pair_threshold=0 # minimum distance in BLEU (here: > 0) -loss_margin=0 # update if correctly ranked, but within this margin +epochs=2 # run over input 2 times +k=100 # use 100best lists +N=4 # optimize (approx) BLEU4 +scorer=fixed_stupid_bleu # use 'stupid' BLEU+1 +learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) +gamma=0 # use SVM reg +sample_from=kbest # use kbest lists (as opposed to forest) +filter=uniq # only unique entries in kbest (surface form) +pair_sampling=XYX # +hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here +pair_threshold=0 # minimum distance in BLEU (here: > 0) +loss_margin=0 # update if correctly ranked, but within this margin diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output index 7cd09dbf..21f91244 100644 --- a/training/dtrain/examples/standard/expected-output +++ b/training/dtrain/examples/standard/expected-output @@ -4,14 +4,14 @@ Reading ./nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** Example feature: Shape_S00000_T00000 -Seeding random number sequence to 2679584485 +Seeding random number sequence to 970626287 dtrain Parameters: k 100 N 4 T 2 - scorer 'stupid_bleu' + scorer 'fixed_stupid_bleu' sample from 'kbest' filter 'uniq' learning rate 1 @@ -34,58 +34,58 @@ Iteration #1 of 2. . 10 Stopping after 10 input sentences. WEIGHTS - Glue = -576 - WordPenalty = +417.79 - LanguageModel = +5117.5 - LanguageModel_OOV = -1307 - PhraseModel_0 = -1612 - PhraseModel_1 = -2159.6 - PhraseModel_2 = -677.36 - PhraseModel_3 = +2663.8 - PhraseModel_4 = -1025.9 - PhraseModel_5 = -8 - PhraseModel_6 = +70 - PassThrough = -1455 + Glue = -614 + WordPenalty = +1256.8 + LanguageModel = +5610.5 + LanguageModel_OOV = -1449 + PhraseModel_0 = -2107 + PhraseModel_1 = -4666.1 + PhraseModel_2 = -2713.5 + PhraseModel_3 = +4204.3 + PhraseModel_4 = -1435.8 + PhraseModel_5 = +916 + PhraseModel_6 = +190 + PassThrough = -2527 --- - 1best avg score: 0.27697 (+0.27697) - 1best avg model score: -47918 (-47918) - avg # pairs: 581.9 (meaningless) - avg # rank err: 581.9 + 1best avg score: 0.17874 (+0.17874) + 1best avg model score: 88399 (+88399) + avg # pairs: 798.2 (meaningless) + avg # rank err: 798.2 avg # margin viol: 0 - non0 feature count: 703 - avg list sz: 90.9 - avg f count: 100.09 -(time 0.25 min, 1.5 s/S) + non0 feature count: 887 + avg list sz: 91.3 + avg f count: 126.85 +(time 0.33 min, 2 s/S) Iteration #2 of 2. . 10 WEIGHTS - Glue = -622 - WordPenalty = +898.56 - LanguageModel = +8066.2 - LanguageModel_OOV = -2590 - PhraseModel_0 = -4335.8 - PhraseModel_1 = -5864.4 - PhraseModel_2 = -1729.8 - PhraseModel_3 = +2831.9 - PhraseModel_4 = -5384.8 - PhraseModel_5 = +1449 - PhraseModel_6 = +480 - PassThrough = -2578 + Glue = -1025 + WordPenalty = +1751.5 + LanguageModel = +10059 + LanguageModel_OOV = -4490 + PhraseModel_0 = -2640.7 + PhraseModel_1 = -3757.4 + PhraseModel_2 = -1133.1 + PhraseModel_3 = +1837.3 + PhraseModel_4 = -3534.3 + PhraseModel_5 = +2308 + PhraseModel_6 = +1677 + PassThrough = -6222 --- - 1best avg score: 0.37119 (+0.094226) - 1best avg model score: -1.3174e+05 (-83822) - avg # pairs: 584.1 (meaningless) - avg # rank err: 584.1 + 1best avg score: 0.30764 (+0.12891) + 1best avg model score: -2.5042e+05 (-3.3882e+05) + avg # pairs: 725.9 (meaningless) + avg # rank err: 725.9 avg # margin viol: 0 - non0 feature count: 1115 + non0 feature count: 1499 avg list sz: 91.3 - avg f count: 90.755 -(time 0.3 min, 1.8 s/S) + avg f count: 114.34 +(time 0.32 min, 1.9 s/S) Writing weights file to '-' ... done --- -Best iteration: 2 [SCORE 'stupid_bleu'=0.37119]. -This took 0.55 min. +Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764]. +This took 0.65 min. diff --git a/training/dtrain/kbestget.h b/training/dtrain/kbestget.h index dd8882e1..85252db3 100644 --- a/training/dtrain/kbestget.h +++ b/training/dtrain/kbestget.h @@ -1,76 +1,12 @@ #ifndef _DTRAIN_KBESTGET_H_ #define _DTRAIN_KBESTGET_H_ -#include "kbest.h" // cdec -#include "sentence_metadata.h" - -#include "verbose.h" -#include "viterbi.h" -#include "ff_register.h" -#include "decoder.h" -#include "weights.h" -#include "logval.h" - -using namespace std; +#include "kbest.h" namespace dtrain { -typedef double score_t; - -struct ScoredHyp -{ - vector<WordID> w; - SparseVector<double> f; - score_t model; - score_t score; - unsigned rank; -}; - -struct LocalScorer -{ - unsigned N_; - vector<score_t> w_; - - virtual score_t - Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0; - - void Reset() {} // only for approx bleu - - inline void - Init(unsigned N, vector<score_t> weights) - { - assert(N > 0); - N_ = N; - if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_); - else w_ = weights; - } - - inline score_t - brevity_penalty(const unsigned hyp_len, const unsigned ref_len) - { - if (hyp_len > ref_len) return 1; - return exp(1 - (score_t)ref_len/hyp_len); - } -}; - -struct HypSampler : public DecoderObserver -{ - LocalScorer* scorer_; - vector<WordID>* ref_; - unsigned f_count_, sz_; - virtual vector<ScoredHyp>* GetSamples()=0; - inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; } - inline void SetRef(vector<WordID>& ref) { ref_ = &ref; } - inline unsigned get_f_count() { return f_count_; } - inline unsigned get_sz() { return sz_; } -}; -//////////////////////////////////////////////////////////////////////////////// - - - - struct KBestGetter : public HypSampler { const unsigned k_; diff --git a/training/dtrain/ksampler.h b/training/dtrain/ksampler.h index bc2f56cd..29dab667 100644 --- a/training/dtrain/ksampler.h +++ b/training/dtrain/ksampler.h @@ -1,13 +1,12 @@ #ifndef _DTRAIN_KSAMPLER_H_ #define _DTRAIN_KSAMPLER_H_ -#include "hg_sampler.h" // cdec -#include "kbestget.h" -#include "score.h" +#include "hg_sampler.h" namespace dtrain { + bool cmp_hyp_by_model_d(ScoredHyp a, ScoredHyp b) { diff --git a/training/dtrain/parallelize.rb b/training/dtrain/parallelize.rb index e661416e..285f3c9b 100755 --- a/training/dtrain/parallelize.rb +++ b/training/dtrain/parallelize.rb @@ -4,7 +4,7 @@ require 'trollop' def usage STDERR.write "Usage: " - STDERR.write "ruby parallelize.rb -c <dtrain.ini> [-e <epochs=10>] [--randomize/-z] [--reshard/-y] -s <#shards|0> [-p <at once=9999>] -i <input> -r <refs> [--qsub/-q] [--dtrain_binary <path to dtrain binary>] [-l \"l2 select_k 100000\"]\n" + STDERR.write "ruby parallelize.rb -c <dtrain.ini> [-e <epochs=10>] [--randomize/-z] [--reshard/-y] -s <#shards|0> [-p <at once=9999>] -i <input> -r <refs> [--qsub/-q] [--dtrain_binary <path to dtrain binary>] [-l \"l2 select_k 100000\"] [--extra_qsub \"-l virtual_free=24G\"]\n" exit 1 end @@ -20,6 +20,7 @@ opts = Trollop::options do opt :references, "references", :type => :string opt :qsub, "use qsub", :type => :bool, :default => false opt :dtrain_binary, "path to dtrain binary", :type => :string + opt :extra_qsub, "extra qsub args", :type => :string, :default => "" end usage if not opts[:config]&&opts[:shards]&&opts[:input]&&opts[:references] @@ -119,11 +120,11 @@ end qsub_str_start = qsub_str_end = '' local_end = '' if use_qsub - qsub_str_start = "qsub -cwd -sync y -b y -j y -o work/out.#{shard}.#{epoch} -N dtrain.#{shard}.#{epoch} \"" + qsub_str_start = "qsub #{opts[:extra_qsub]} -cwd -sync y -b y -j y -o work/out.#{shard}.#{epoch} -N dtrain.#{shard}.#{epoch} \"" qsub_str_end = "\"" local_end = '' else - local_end = "&>work/out.#{shard}.#{epoch}" + local_end = "2>work/out.#{shard}.#{epoch}" end pids << Kernel.fork { `#{qsub_str_start}#{dtrain_bin} -c #{ini}\ diff --git a/training/dtrain/score.h b/training/dtrain/score.h index bddaa071..53e970ba 100644 --- a/training/dtrain/score.h +++ b/training/dtrain/score.h @@ -1,9 +1,7 @@ #ifndef _DTRAIN_SCORE_H_ #define _DTRAIN_SCORE_H_ -#include "kbestget.h" - -using namespace std; +#include "dtrain.h" namespace dtrain { @@ -141,36 +139,43 @@ struct BleuScorer : public LocalScorer { score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len); score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + void Reset() {} }; struct StupidBleuScorer : public LocalScorer { score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + void Reset() {} }; struct FixedStupidBleuScorer : public LocalScorer { score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + void Reset() {} }; struct SmoothBleuScorer : public LocalScorer { score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + void Reset() {} }; struct SumBleuScorer : public LocalScorer { - score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + void Reset() {} }; struct SumExpBleuScorer : public LocalScorer { - score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + void Reset() {} }; struct SumWhateverBleuScorer : public LocalScorer { - score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/); + void Reset() {}; }; struct ApproxBleuScorer : public BleuScorer |