diff options
author | andrea gesmundo <andrea.gesmundo@gmail.com> | 2011-07-08 13:56:42 +0200 |
---|---|---|
committer | andrea gesmundo <andrea.gesmundo@gmail.com> | 2011-07-08 13:56:42 +0200 |
commit | 85b7e8ae194d98ca85da1692e2679db8defff91b (patch) | |
tree | 670572379dd186f37b6810de4fe3f2116db329d3 | |
parent | 4b73c9b8d22cd490e4bf735641aab592b346e966 (diff) |
add Fast Cube Pruning
-rw-r--r-- | decoder/apply_models.cc | 196 | ||||
-rw-r--r-- | decoder/apply_models.h | 6 | ||||
-rw-r--r-- | decoder/decoder.cc | 10 |
3 files changed, 204 insertions, 8 deletions
diff --git a/decoder/apply_models.cc b/decoder/apply_models.cc index 9390c809..62eff262 100644 --- a/decoder/apply_models.cc +++ b/decoder/apply_models.cc @@ -17,6 +17,10 @@ #include "hg.h" #include "ff.h" +#define NORMAL_CP 1 +#define FAST_CP 2 +#define FAST_CP_2 3 + using namespace std; using namespace std::tr1; @@ -164,13 +168,15 @@ public: const SentenceMetadata& sm, const Hypergraph& i, int pop_limit, - Hypergraph* o) : + Hypergraph* o, + int s = NORMAL_CP ) : models(m), smeta(sm), in(i), out(*o), D(in.nodes_.size()), - pop_limit_(pop_limit) { + pop_limit_(pop_limit), + strategy_(s){ if (!SILENT) cerr << " Applying feature functions (cube pruning, pop_limit = " << pop_limit_ << ')' << endl; node_states_.reserve(kRESERVE_NUM_NODES); } @@ -186,7 +192,15 @@ public: if (!SILENT) cerr << " "; for (int i = 0; i < in.nodes_.size(); ++i) { if (!SILENT && i % every == 0) cerr << '.'; - KBest(i, i == goal_id); + if (strategy_==NORMAL_CP){ + KBest(i, i == goal_id); + } + if (strategy_==FAST_CP){ + KBestFast(i, i == goal_id); + } + if (strategy_==FAST_CP_2){ + KBestFast2(i, i == goal_id); + } } if (!SILENT) { cerr << endl; @@ -283,6 +297,114 @@ public: delete freelist[i]; } + void KBestFast(const int vert_index, const bool is_goal) { + // cerr << "KBest(" << vert_index << ")\n"; + CandidateList& D_v = D[vert_index]; + assert(D_v.empty()); + const Hypergraph::Node& v = in.nodes_[vert_index]; + // cerr << " has " << v.in_edges_.size() << " in-coming edges\n"; + const vector<int>& in_edges = v.in_edges_; + CandidateHeap cand; + CandidateList freelist; + cand.reserve(in_edges.size()); + //init with j<0,0> for all rules-edges that lead to node-(NT-span) + for (int i = 0; i < in_edges.size(); ++i) { + const Hypergraph::Edge& edge = in.edges_[in_edges[i]]; + const JVector j(edge.tail_nodes_.size(), 0); + cand.push_back(new Candidate(edge, j, out, D, node_states_, smeta, models, is_goal)); + } + // cerr << " making heap of " << cand.size() << " candidates\n"; + make_heap(cand.begin(), cand.end(), HeapCandCompare()); + State2Node state2node; // "buf" in Figure 2 + int pops = 0; + while(!cand.empty() && pops < pop_limit_) { + pop_heap(cand.begin(), cand.end(), HeapCandCompare()); + Candidate* item = cand.back(); + cand.pop_back(); + // cerr << "POPPED: " << *item << endl; + + PushSuccFast(*item, is_goal, &cand); + IncorporateIntoPlusLMForest(item, &state2node, &freelist); + ++pops; + } + D_v.resize(state2node.size()); + int c = 0; + for (State2Node::iterator i = state2node.begin(); i != state2node.end(); ++i){ + D_v[c++] = i->second; + // cerr << "MERGED: " << *i->second << endl; + } + //cerr <<"Node id: "<< vert_index<< endl; + //#ifdef MEASURE_CA + // cerr << "countInProcess (pop/tot): node id: " << vert_index << " (" << count_in_process_pop << "/" << count_in_process_tot << ")"<<endl; + // cerr << "countAtEnd (pop/tot): node id: " << vert_index << " (" << count_at_end_pop << "/" << count_at_end_tot << ")"<<endl; + //#endif + sort(D_v.begin(), D_v.end(), EstProbSorter()); + + // cerr << " expanded to " << D_v.size() << " nodes\n"; + + for (int i = 0; i < cand.size(); ++i) + delete cand[i]; + // freelist is necessary since even after an item merged, it still stays in + // the unique set so it can't be deleted til now + for (int i = 0; i < freelist.size(); ++i) + delete freelist[i]; + } + + void KBestFast2(const int vert_index, const bool is_goal) { + // cerr << "KBest(" << vert_index << ")\n"; + CandidateList& D_v = D[vert_index]; + assert(D_v.empty()); + const Hypergraph::Node& v = in.nodes_[vert_index]; + // cerr << " has " << v.in_edges_.size() << " in-coming edges\n"; + const vector<int>& in_edges = v.in_edges_; + CandidateHeap cand; + CandidateList freelist; + cand.reserve(in_edges.size()); + UniqueCandidateSet unique_accepted; + //init with j<0,0> for all rules-edges that lead to node-(NT-span) + for (int i = 0; i < in_edges.size(); ++i) { + const Hypergraph::Edge& edge = in.edges_[in_edges[i]]; + const JVector j(edge.tail_nodes_.size(), 0); + cand.push_back(new Candidate(edge, j, out, D, node_states_, smeta, models, is_goal)); + } + // cerr << " making heap of " << cand.size() << " candidates\n"; + make_heap(cand.begin(), cand.end(), HeapCandCompare()); + State2Node state2node; // "buf" in Figure 2 + int pops = 0; + while(!cand.empty() && pops < pop_limit_) { + pop_heap(cand.begin(), cand.end(), HeapCandCompare()); + Candidate* item = cand.back(); + cand.pop_back(); + assert(unique_accepted.insert(item).second); // these should all be unique! + // cerr << "POPPED: " << *item << endl; + + PushSuccFast2(*item, is_goal, &cand, &unique_accepted); + IncorporateIntoPlusLMForest(item, &state2node, &freelist); + ++pops; + } + D_v.resize(state2node.size()); + int c = 0; + for (State2Node::iterator i = state2node.begin(); i != state2node.end(); ++i){ + D_v[c++] = i->second; + // cerr << "MERGED: " << *i->second << endl; + } + //cerr <<"Node id: "<< vert_index<< endl; + //#ifdef MEASURE_CA + // cerr << "countInProcess (pop/tot): node id: " << vert_index << " (" << count_in_process_pop << "/" << count_in_process_tot << ")"<<endl; + // cerr << "countAtEnd (pop/tot): node id: " << vert_index << " (" << count_at_end_pop << "/" << count_at_end_tot << ")"<<endl; + //#endif + sort(D_v.begin(), D_v.end(), EstProbSorter()); + + // cerr << " expanded to " << D_v.size() << " nodes\n"; + + for (int i = 0; i < cand.size(); ++i) + delete cand[i]; + // freelist is necessary since even after an item merged, it still stays in + // the unique set so it can't be deleted til now + for (int i = 0; i < freelist.size(); ++i) + delete freelist[i]; + } + void PushSucc(const Candidate& item, const bool is_goal, CandidateHeap* pcand, UniqueCandidateSet* cs) { CandidateHeap& cand = *pcand; for (int i = 0; i < item.j_.size(); ++i) { @@ -300,6 +422,54 @@ public: } } + //PushSucc following unique ancestor generation function + void PushSuccFast(const Candidate& item, const bool is_goal, CandidateHeap* pcand){ + CandidateHeap& cand = *pcand; + for (int i = 0; i < item.j_.size(); ++i) { + JVector j = item.j_; + ++j[i]; + if (j[i] < D[item.in_edge_->tail_nodes_[i]].size()) { + Candidate* new_cand = new Candidate(*item.in_edge_, j, out, D, node_states_, smeta, models, is_goal); + cand.push_back(new_cand); + push_heap(cand.begin(), cand.end(), HeapCandCompare()); + } + if(item.j_[i]!=0){ + return; + } + } + } + + //PushSucc only if all ancest Cand are added + void PushSuccFast2(const Candidate& item, const bool is_goal, CandidateHeap* pcand, UniqueCandidateSet* ps){ + CandidateHeap& cand = *pcand; + for (int i = 0; i < item.j_.size(); ++i) { + JVector j = item.j_; + ++j[i]; + if (j[i] < D[item.in_edge_->tail_nodes_[i]].size()) { + Candidate query_unique(*item.in_edge_, j); + if (HasAllAncestors(&query_unique,ps)) { + Candidate* new_cand = new Candidate(*item.in_edge_, j, out, D, node_states_, smeta, models, is_goal); + cand.push_back(new_cand); + push_heap(cand.begin(), cand.end(), HeapCandCompare()); + } + } + } + } + + bool HasAllAncestors(const Candidate* item, UniqueCandidateSet* cs){ + for (int i = 0; i < item->j_.size(); ++i) { + JVector j = item->j_; + --j[i]; + if (j[i] >=0) { + Candidate query_unique(*item->in_edge_, j); + if (cs->count(&query_unique) == 0) { + return false; + } + } + } + return true; + } + const ModelSet& models; const SentenceMetadata& smeta; const Hypergraph& in; @@ -311,6 +481,7 @@ public: FFStates node_states_; // for each node in the out-HG what is // its q function value? const int pop_limit_; + const int strategy_; //switch Cube Pruning strategy: 1 normal, 2 fast (alg 2), 3 fast_2 (alg 3). (see: Gesmundo A., Henderson J,. Faster Cube Pruning, IWSLT 2010) }; struct NoPruningRescorer { @@ -412,15 +583,28 @@ void ApplyModelSet(const Hypergraph& in, if (models.stateless() || config.algorithm == IntersectionConfiguration::FULL) { NoPruningRescorer ma(models, smeta, in, out); // avoid overhead of best-first when no state ma.Apply(); - } else if (config.algorithm == IntersectionConfiguration::CUBE) { + } else if (config.algorithm == IntersectionConfiguration::CUBE + || config.algorithm == IntersectionConfiguration::FAST_CUBE_PRUNING + || config.algorithm == IntersectionConfiguration::FAST_CUBE_PRUNING_2) { int pl = config.pop_limit; const int max_pl_for_large=50; if (pl > max_pl_for_large && in.nodes_.size() > 80000) { pl = max_pl_for_large; cerr << " Note: reducing pop_limit to " << pl << " for very large forest\n"; } - CubePruningRescorer ma(models, smeta, in, pl, out); - ma.Apply(); + if (config.algorithm == IntersectionConfiguration::CUBE) { + CubePruningRescorer ma(models, smeta, in, pl, out); + ma.Apply(); + } + else if (config.algorithm == IntersectionConfiguration::FAST_CUBE_PRUNING){ + CubePruningRescorer ma(models, smeta, in, pl, out, FAST_CP); + ma.Apply(); + } + else if (config.algorithm == IntersectionConfiguration::FAST_CUBE_PRUNING_2){ + CubePruningRescorer ma(models, smeta, in, pl, out, FAST_CP_2); + ma.Apply(); + } + } else { cerr << "Don't understand intersection algorithm " << config.algorithm << endl; exit(1); diff --git a/decoder/apply_models.h b/decoder/apply_models.h index a85694aa..19a4c7be 100644 --- a/decoder/apply_models.h +++ b/decoder/apply_models.h @@ -13,6 +13,8 @@ struct IntersectionConfiguration { enum { FULL, CUBE, + FAST_CUBE_PRUNING, + FAST_CUBE_PRUNING_2, N_ALGORITHMS }; @@ -25,7 +27,9 @@ enum { inline std::ostream& operator<<(std::ostream& os, const IntersectionConfiguration& c) { if (c.algorithm == 0) { os << "FULL"; } else if (c.algorithm == 1) { os << "CUBE:k=" << c.pop_limit; } - else if (c.algorithm == 2) { os << "N_ALGORITHMS"; } + else if (c.algorithm == 2) { os << "FAST_CUBE_PRUNING"; } + else if (c.algorithm == 3) { os << "FAST_CUBE_PRUNING_2"; } + else if (c.algorithm == 4) { os << "N_ALGORITHMS"; } else os << "OTHER"; return os; } diff --git a/decoder/decoder.cc b/decoder/decoder.cc index 2c3a06de..8a4a1485 100644 --- a/decoder/decoder.cc +++ b/decoder/decoder.cc @@ -357,7 +357,7 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream ("weights,w",po::value<string>(),"Feature weights file (initial forest / pass 1)") ("feature_function,F",po::value<vector<string> >()->composing(), "Pass 1 additional feature function(s) (-L for list)") - ("intersection_strategy,I",po::value<string>()->default_value("cube_pruning"), "Pass 1 intersection strategy for incorporating finite-state features; values include Cube_pruning, Full") + ("intersection_strategy,I",po::value<string>()->default_value("cube_pruning"), "Pass 1 intersection strategy for incorporating finite-state features; values include Cube_pruning, Full, Fast_cube_pruning, Fast_cube_pruning_2") ("summary_feature", po::value<string>(), "Compute a 'summary feature' at the end of the pass (before any pruning) with name=arg and value=inside-outside/Z") ("summary_feature_type", po::value<string>()->default_value("node_risk"), "Summary feature types: node_risk, edge_risk, edge_prob") ("density_prune", po::value<double>(), "Pass 1 pruning: keep no more than this many times the number of edges used in the best derivation tree (>=1.0)") @@ -597,6 +597,14 @@ DecoderImpl::DecoderImpl(po::variables_map& conf, int argc, char** argv, istream if (LowercaseString(str(isn.c_str(),conf)) == "full") { palg = 0; } + if (LowercaseString(conf["intersection_strategy"].as<string>()) == "fast_cube_pruning") { + palg = 2; + cerr << "Using Fast Cube Pruning intersection (see Algorithm 2 described in: Gesmundo A., Henderson J,. Faster Cube Pruning, IWSLT 2010).\n"; + } + if (LowercaseString(conf["intersection_strategy"].as<string>()) == "fast_cube_pruning_2") { + palg = 3; + cerr << "Using Fast Cube Pruning 2 intersection (see Algorithm 3 described in: Gesmundo A., Henderson J,. Faster Cube Pruning, IWSLT 2010).\n"; + } rp.inter_conf.reset(new IntersectionConfiguration(palg, pop_limit)); } else { break; // TODO alert user if there are any future configurations |