diff options
author | desaicwtf <desaicwtf@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-08-13 11:10:47 +0000 |
---|---|---|
committer | desaicwtf <desaicwtf@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-08-13 11:10:47 +0000 |
commit | 12a546fcd6a48eeb5e1574a1e1b01843fe0a5d7b (patch) | |
tree | b303a97a6f6581e90f84e9b5ce311c95ded26fc9 | |
parent | 86bb77e674c4df9c46e3e2d8bba8a5c8b42bb98c (diff) |
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@542 ec762483-ff6d-05da-a07a-a48fb63a330f
-rw-r--r-- | report/pr-clustering/posterior.tex | 33 |
1 files changed, 23 insertions, 10 deletions
diff --git a/report/pr-clustering/posterior.tex b/report/pr-clustering/posterior.tex index 7cede80b..c66eaa4c 100644 --- a/report/pr-clustering/posterior.tex +++ b/report/pr-clustering/posterior.tex @@ -25,30 +25,30 @@ category and then that category generates the contex for the phrase. \label{fig:EM} \end{figure} -The joint probability of a category $z$ and a context $\bf{c}$ -given a phrase $\bf{p}$ is +The joint probability of a category $z$ and a context $\textbf{c}$ +given a phrase $\textbf{p}$ is \[ -P(z,\bf{c}|\bf{p})=P(z|\bf{p})P(\bf{c}|z). +P(z,\textbf{c}|\textbf{p})=P(z|\textbf{p})P(\textbf{c}|z). \] -$P(z|\bf{p})$ is distribution of categories given a phrase. +$P(z|\textbf{p})$ is distribution of categories given a phrase. This can be learned from data. -$P(\bf{c}|z)$ is distribution of context given a category. +$P(\textbf{c}|z)$ is distribution of context given a category. Since a context usually contains multiple slots for words, we further decompose this distribution into independent distributions at each slot. For example, suppose a context consists of two positions before and after the phrase. Denote these words as $c_{-2},c_{-1},c_1,c_2$. Use $P_{-2},P_{-1},P_1,P_2$ to denote distributions of words at each -position, $P(\bf{c}|z)$ is decomposed as +position, $P(\textbf{c}|z)$ is decomposed as \[ -P(\bf{c}|z)=P_{-2}(c_{-2}|z)P_{-1} +P(\textbf{c}|z)=P_{-2}(c_{-2}|z)P_{-1} (c_{-1}|z)P_1(c_1|z)P_2(c_2|z). \] The posterior probability of a category given a phrase and a context can be computed by normalizing the joint probability: \[ -P(z|\bf{p},\bf{c})=\frac{P(z,\bf{c}|\bf{p})} -{\sum_{i=1,K}P(i,\bf{c}|\bf{p})}. +P(z|\textbf{p},\textbf{c})=\frac{P(z,\textbf{c}|\textbf{p})} +{\sum_{i=1,K}P(i,\textbf{c}|\textbf{p})}. \] With the mechanisms to compute the posterior probabilities, we can apply EM to learn all the probabilities. @@ -65,4 +65,17 @@ each phrase. Posterior regularization provides a way to enforce sparsity \citep{ganchev:penn:2009}. The constraint we use here is called $l_1/ l_\infty$ -regularization.
\ No newline at end of file +regularization. +In a more mathematical formulation, for each phrase $\textbf{p}$, +we want the quantity +\[\sum_{z=1}^K \max_i P(z|\textbf{p},\textbf{c}_i) \] +to be small, where $\textbf{c}_i$ is the context +appeared around the $i$th occurrence of phrase $\textbf{p}$ +throughout the data. This quantity roughly equals +the number of categories phrase $\textbf{p}$ uses. +It is minimized to $1$ if and only if +the posterior distributions $P(z|\textbf{p},\textbf{c}_i)$ +are the same +for all +occurrences of $\textbf{p}$. That is , +$\forall i,j$, $P(z|\textbf{p},\textbf{c}_i)=P(z|\textbf{p},\textbf{c}_j)$. |