1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
#include "sparse_vector.h"
#include <iostream>
#include <cstring>
#include "fdict.h"
#include "b64tools.h"
using namespace std;
namespace B64 {
void Encode(double objective, const SparseVector<double>& v, ostream* out) {
const int num_feats = v.size();
size_t tot_size = 0;
const size_t off_objective = tot_size;
tot_size += sizeof(double); // objective
const size_t off_num_feats = tot_size;
tot_size += sizeof(int); // num_feats
const size_t off_data = tot_size;
tot_size += sizeof(unsigned char) * num_feats; // lengths of feature names;
typedef SparseVector<double>::const_iterator const_iterator;
for (const_iterator it = v.begin(); it != v.end(); ++it)
tot_size += FD::Convert(it->first).size(); // feature names;
tot_size += sizeof(double) * num_feats; // gradient
const size_t off_magic = tot_size;
tot_size += 4; // magic
// size_t b64_size = tot_size * 4 / 3;
// cerr << "Sparse vector binary size: " << tot_size << " (b64 size=" << b64_size << ")\n";
char* data = new char[tot_size];
*reinterpret_cast<double*>(&data[off_objective]) = objective;
*reinterpret_cast<int*>(&data[off_num_feats]) = num_feats;
char* cur = &data[off_data];
assert(cur - data == off_data);
for (const_iterator it = v.begin(); it != v.end(); ++it) {
const string& fname = FD::Convert(it->first);
*cur++ = static_cast<char>(fname.size()); // name len
memcpy(cur, &fname[0], fname.size());
cur += fname.size();
*reinterpret_cast<double*>(cur) = it->second;
cur += sizeof(double);
}
assert(cur - data == off_magic);
*reinterpret_cast<unsigned int*>(cur) = 0xBAABABBAu;
cur += sizeof(unsigned int);
assert(cur - data == tot_size);
b64encode(data, tot_size, out);
delete[] data;
}
bool Decode(double* objective, SparseVector<double>* v, const char* in, size_t size) {
v->clear();
if (size % 4 != 0) {
cerr << "B64 error - line % 4 != 0\n";
return false;
}
const size_t decoded_size = size * 3 / 4 - sizeof(unsigned int);
const size_t buf_size = decoded_size + sizeof(unsigned int);
if (decoded_size < 6) { cerr << "SparseVector decoding error: too short!\n"; return false; }
char* data = new char[buf_size];
if (!b64decode(reinterpret_cast<const unsigned char*>(in), size, data, buf_size)) {
delete[] data;
return false;
}
size_t cur = 0;
*objective = *reinterpret_cast<double*>(data);
cur += sizeof(double);
const int num_feats = *reinterpret_cast<int*>(&data[cur]);
cur += sizeof(int);
int fc = 0;
while(fc < num_feats && cur < decoded_size) {
++fc;
const int fname_len = data[cur++];
assert(fname_len > 0);
assert(fname_len < 256);
string fname(fname_len, '\0');
memcpy(&fname[0], &data[cur], fname_len);
cur += fname_len;
const double val = *reinterpret_cast<double*>(&data[cur]);
cur += sizeof(double);
int fid = FD::Convert(fname);
v->set_value(fid, val);
}
if(num_feats != fc) {
cerr << "Expected " << num_feats << " but only decoded " << fc << "!\n";
delete[] data;
return false;
}
if (*reinterpret_cast<unsigned int*>(&data[cur]) != 0xBAABABBAu) {
cerr << "SparseVector decodeding error : magic does not match!\n";
delete[] data;
return false;
}
delete[] data;
return true;
}
}
|