summaryrefslogtreecommitdiff
path: root/utils/mfcr.h
blob: 396d020586e99e4486d188f8a88861c76f5d8336 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#ifndef _MFCR_H_
#define _MFCR_H_

#include <algorithm>
#include <numeric>
#include <cassert>
#include <cmath>
#include <list>
#include <iostream>
#include <vector>
#include <tr1/unordered_map>
#include <boost/functional/hash.hpp>
#include "sampler.h"
#include "slice_sampler.h"
#include "m.h"

struct TableCount {
  TableCount() : count(), floor() {}
  TableCount(int c, int f) : count(c), floor(f) {
    assert(f >= 0);
  }
  int count;               // count or delta (may be 0, <0, or >0)
  unsigned char floor;     // from which floor?
};
 
std::ostream& operator<<(std::ostream& o, const TableCount& tc) {
  return o << "[c=" << tc.count << " floor=" << static_cast<unsigned int>(tc.floor) << ']';
}

// Multi-Floor Chinese Restaurant as proposed by Wood & Teh (AISTATS, 2009) to simulate
// graphical Pitman-Yor processes.
// http://jmlr.csail.mit.edu/proceedings/papers/v5/wood09a/wood09a.pdf
//
// Implementation is based on Blunsom, Cohn, Goldwater, & Johnson (ACL 2009) and code
// referenced therein.
// http://www.aclweb.org/anthology/P/P09/P09-2085.pdf
//
template <typename Dish, typename DishHash = boost::hash<Dish> >
class MFCR {
 public:

  MFCR(unsigned num_floors, double d, double alpha) :
    num_floors_(num_floors),
    num_tables_(),
    num_customers_(),
    d_(d),
    alpha_(alpha),
    d_prior_alpha_(std::numeric_limits<double>::quiet_NaN()),
    d_prior_beta_(std::numeric_limits<double>::quiet_NaN()),
    alpha_prior_shape_(std::numeric_limits<double>::quiet_NaN()),
    alpha_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {}

  MFCR(unsigned num_floors, double d_alpha, double d_beta, double alpha_shape, double alpha_rate, double d = 0.9, double alpha = 10.0) :
    num_floors_(num_floors),
    num_tables_(),
    num_customers_(),
    d_(d),
    alpha_(alpha),
    d_prior_alpha_(d_alpha),
    d_prior_beta_(d_beta),
    alpha_prior_shape_(alpha_shape),
    alpha_prior_rate_(alpha_rate) {}

  double d() const { return d_; }
  double alpha() const { return alpha_; }

  bool has_d_prior() const {
    return !std::isnan(d_prior_alpha_);
  }

  bool has_alpha_prior() const {
    return !std::isnan(alpha_prior_shape_);
  }

  void clear() {
    num_tables_ = 0;
    num_customers_ = 0;
    dish_locs_.clear();
  }

  unsigned num_tables() const {
    return num_tables_;
  }

  unsigned num_tables(const Dish& dish) const {
    const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
    if (it == dish_locs_.end()) return 0;
    return it->second.table_counts_.size();
  }

  // this is not terribly efficient but it should not typically be necessary to execute this query
  unsigned num_tables(const Dish& dish, const unsigned floor) const {
    const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
    if (it == dish_locs_.end()) return 0;
    unsigned c = 0;
    for (typename std::list<TableCount>::const_iterator i = it->second.table_counts_.begin();
         i != it->second.table_counts_.end(); ++i) {
      if (i->floor == floor) ++c;
    }
    return c;
  }

  unsigned num_customers() const {
    return num_customers_;
  }

  unsigned num_customers(const Dish& dish) const {
    const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
    if (it == dish_locs_.end()) return 0;
    return it->total_dish_count_;
  }

  // returns (delta, floor) indicating whether a new table (delta) was opened and on which floor
  TableCount increment(const Dish& dish, const std::vector<double>& p0s, const std::vector<double>& lambdas, MT19937* rng) {
    assert(p0s.size() == num_floors_);
    assert(lambdas.size() == num_floors_);

    DishLocations& loc = dish_locs_[dish];
    // marg_p0 = marginal probability of opening a new table on any floor with label dish
    const double marg_p0 = std::inner_product(p0s.begin(), p0s.end(), lambdas.begin(), 0.0);
    assert(marg_p0 <= 1.0);
    int floor = -1;
    bool share_table = false;
    if (loc.total_dish_count_) {
      const double p_empty = (alpha_ + num_tables_ * d_) * marg_p0;
      const double p_share = (loc.total_dish_count_ - loc.table_counts_.size() * d_);
      share_table = rng->SelectSample(p_empty, p_share);
    }
    if (share_table) {
      double r = rng->next() * (loc.total_dish_count_ - loc.table_counts_.size() * d_);
      for (typename std::list<TableCount>::iterator ti = loc.table_counts_.begin();
           ti != loc.table_counts_.end(); ++ti) {
        r -= ti->count - d_;
        if (r <= 0.0) {
          ++ti->count;
          floor = ti->floor;
          break;
        }
      }
      if (r > 0.0) {
        std::cerr << "Serious error: r=" << r << std::endl;
        Print(&std::cerr);
        assert(r <= 0.0);
      }
    } else { // sit at currently empty table -- must sample what floor
      double r = rng->next() * marg_p0;
      for (unsigned i = 0; i < p0s.size(); ++i) {
        r -= p0s[i] * lambdas[i];
        if (r <= 0.0) {
          floor = i;
          break;
        }
      }
      assert(floor >= 0);
      loc.table_counts_.push_back(TableCount(1, floor));
      ++num_tables_;
    }
    ++loc.total_dish_count_;
    ++num_customers_;
    return (share_table ? TableCount(0, floor) : TableCount(1, floor));
  }

  // returns first = -1 or 0, indicating whether a table was closed, and on what floor (second)
  TableCount decrement(const Dish& dish, MT19937* rng) {
    DishLocations& loc = dish_locs_[dish];
    assert(loc.total_dish_count_);
    int floor = -1;
    int delta = 0;
    if (loc.total_dish_count_ == 1) {
      floor = loc.table_counts_.front().floor;
      dish_locs_.erase(dish);
      --num_tables_;
      --num_customers_;
      delta = -1;
    } else {
      // sample customer to remove UNIFORMLY. that is, do NOT use the d
      // here. if you do, it will introduce (unwanted) bias!
      double r = rng->next() * loc.total_dish_count_;
      --loc.total_dish_count_;
      --num_customers_;
      for (typename std::list<TableCount>::iterator ti = loc.table_counts_.begin();
           ti != loc.table_counts_.end(); ++ti) {
        r -= ti->count;
        if (r <= 0.0) {
          floor = ti->floor;
          if ((--ti->count) == 0) {
            --num_tables_;
            delta = -1;
            loc.table_counts_.erase(ti);
          }
          break;
        }
      }
      if (r > 0.0) {
        std::cerr << "Serious error: r=" << r << std::endl;
        Print(&std::cerr);
        assert(r <= 0.0);
      }
    }
    return TableCount(delta, floor);
  }

  double prob(const Dish& dish, const std::vector<double>& p0s, const std::vector<double>& lambdas) const {
    assert(p0s.size() == num_floors_);
    assert(lambdas.size() == num_floors_);
    const double marg_p0 = std::inner_product(p0s.begin(), p0s.end(), lambdas.begin(), 0.0);
    assert(marg_p0 <= 1.0);
    const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
    const double r = num_tables_ * d_ + alpha_;
    if (it == dish_locs_.end()) {
      return r * marg_p0 / (num_customers_ + alpha_);
    } else {
      return (it->second.total_dish_count_ - d_ * it->second.table_counts_.size() + r * marg_p0) /
               (num_customers_ + alpha_);
    }
  }

  double log_crp_prob() const {
    return log_crp_prob(d_, alpha_);
  }

  // taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process
  // does not include draws from G_w's
  double log_crp_prob(const double& d, const double& alpha) const {
    double lp = 0.0;
    if (has_d_prior())
      lp = Md::log_beta_density(d, d_prior_alpha_, d_prior_beta_);
    if (has_alpha_prior())
      lp += Md::log_gamma_density(alpha, alpha_prior_shape_, alpha_prior_rate_);
    assert(lp <= 0.0);
    if (num_customers_) {
      if (d > 0.0) {
        const double r = lgamma(1.0 - d);
        lp += lgamma(alpha) - lgamma(alpha + num_customers_)
             + num_tables_ * log(d) + lgamma(alpha / d + num_tables_)
             - lgamma(alpha / d);
        assert(std::isfinite(lp));
        for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
             it != dish_locs_.end(); ++it) {
          const DishLocations& cur = it->second;
          for (std::list<TableCount>::const_iterator ti = cur.table_counts_.begin(); ti != cur.table_counts_.end(); ++ti) {
            lp += lgamma(ti->count - d) - r;
          }
        }
      } else {
        assert(!"not implemented yet");
      }
    }
    assert(std::isfinite(lp));
    return lp;
  }

  void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
    assert(has_d_prior() || has_alpha_prior());
    DiscountResampler dr(*this);
    ConcentrationResampler cr(*this);
    for (int iter = 0; iter < nloop; ++iter) {
      if (has_alpha_prior()) {
        alpha_ = slice_sampler1d(cr, alpha_, *rng, 0.0,
                               std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
      }
      if (has_d_prior()) {
        d_ = slice_sampler1d(dr, d_, *rng, std::numeric_limits<double>::min(),
                               1.0, 0.0, niterations, 100*niterations);
      }
    }
    alpha_ = slice_sampler1d(cr, alpha_, *rng, 0.0,
                             std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
  }

  struct DiscountResampler {
    DiscountResampler(const MFCR& crp) : crp_(crp) {}
    const MFCR& crp_;
    double operator()(const double& proposed_d) const {
      return crp_.log_crp_prob(proposed_d, crp_.alpha_);
    }
  };

  struct ConcentrationResampler {
    ConcentrationResampler(const MFCR& crp) : crp_(crp) {}
    const MFCR& crp_;
    double operator()(const double& proposed_alpha) const {
      return crp_.log_crp_prob(crp_.d_, proposed_alpha);
    }
  };

  struct DishLocations {
    DishLocations() : total_dish_count_() {}
    unsigned total_dish_count_;          // customers at all tables with this dish
    std::list<TableCount> table_counts_; // list<> gives O(1) deletion and insertion, which we want
                                         // .size() is the number of tables for this dish
  };

  void Print(std::ostream* out) const {
    (*out) << "MFCR(d=" << d_ << ",alpha=" << alpha_ << ") customers=" << num_customers_ << std::endl;
    for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
         it != dish_locs_.end(); ++it) {
      (*out) << it->first << " (" << it->second.total_dish_count_ << " on " << it->second.table_counts_.size() << " tables): ";
      for (typename std::list<TableCount>::const_iterator i = it->second.table_counts_.begin();
           i != it->second.table_counts_.end(); ++i) {
        (*out) << " " << *i;
      }
      (*out) << std::endl;
    }
  }

  typedef typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator const_iterator;
  const_iterator begin() const {
    return dish_locs_.begin();
  }
  const_iterator end() const {
    return dish_locs_.end();
  }

  unsigned num_floors_;
  unsigned num_tables_;
  unsigned num_customers_;
  std::tr1::unordered_map<Dish, DishLocations, DishHash> dish_locs_;

  double d_;
  double alpha_;

  // optional beta prior on d_ (NaN if no prior)
  double d_prior_alpha_;
  double d_prior_beta_;

  // optional gamma prior on alpha_ (NaN if no prior)
  double alpha_prior_shape_;
  double alpha_prior_rate_;
};

template <typename T,typename H>
std::ostream& operator<<(std::ostream& o, const MFCR<T,H>& c) {
  c.Print(&o);
  return o;
}

#endif