1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
#ifndef _FAST_SPARSE_VECTOR_H_
#define _FAST_SPARSE_VECTOR_H_
// FastSparseVector<T> is a integer indexed unordered map that supports very fast
// (mathematical) vector operations when the sizes are very small, and reasonably
// fast operations when the sizes are large.
// important: indexes are integers
// important: iterators may return elements in any order
#include "config.h"
#include <cmath>
#include <cstring>
#include <climits>
#include <map>
#include <cassert>
#include <vector>
#include <boost/static_assert.hpp>
#if HAVE_BOOST_ARCHIVE_TEXT_OARCHIVE_HPP
#include <boost/serialization/map.hpp>
#endif
#include "fdict.h"
// this is architecture dependent, it should be
// detected in some way but it's probably easiest (for me)
// to just set it
#define L2_CACHE_LINE 128
// this should just be a typedef to pair<int,T> on the new c++
// I have to avoid this since I want to use unions and c++-98
// does not let unions have types with constructors in them
// this type bypasses default constructors. use with caution!
// this should work as long as T does have a destructor that
// does anything
template <typename T>
struct PairIntT {
const PairIntT& operator=(const std::pair<const int, T>& v) {
std::memcpy(this, &v, sizeof(PairIntT));
return *this;
}
operator const std::pair<const int, T>&() const {
return *reinterpret_cast<const std::pair<const int, T>*>(this);
}
int& first() {
return reinterpret_cast<std::pair<int, T>*>(this)->first;
}
T& second() {
return reinterpret_cast<std::pair<int, T>*>(this)->second;
}
const int& first() const {
return reinterpret_cast<const std::pair<int, T>*>(this)->first;
}
const T& second() const {
return reinterpret_cast<const std::pair<int, T>*>(this)->second;
}
private:
// very bad way of bypassing the default constructor on T
char data_[sizeof(std::pair<int, T>)];
};
BOOST_STATIC_ASSERT(sizeof(PairIntT<float>) == sizeof(std::pair<int,float>));
template <typename T, int LOCAL_MAX = (sizeof(T) == sizeof(float) ? 15 : 7)>
class FastSparseVector {
public:
struct const_iterator {
const_iterator(const FastSparseVector<T>& v, const bool is_end) : local_(!v.is_remote_) {
if (local_) {
local_it_ = &v.data_.local[is_end ? v.local_size_ : 0];
} else {
if (is_end)
remote_it_ = v.data_.rbmap->end();
else
remote_it_ = v.data_.rbmap->begin();
}
}
const bool local_;
const PairIntT<T>* local_it_;
typename std::map<int, T>::const_iterator remote_it_;
const std::pair<const int, T>& operator*() const {
if (local_)
return *reinterpret_cast<const std::pair<const int, float>*>(local_it_);
else
return *remote_it_;
}
const std::pair<const int, T>* operator->() const {
if (local_)
return reinterpret_cast<const std::pair<const int, T>*>(local_it_);
else
return &*remote_it_;
}
const_iterator& operator++() {
if (local_) ++local_it_; else ++remote_it_;
return *this;
}
inline bool operator==(const const_iterator& o) const {
if (o.local_ != local_) return false;
if (local_) {
return local_it_ == o.local_it_;
} else {
return remote_it_ == o.remote_it_;
}
}
inline bool operator!=(const const_iterator& o) const {
return !(o == *this);
}
};
public:
FastSparseVector() : local_size_(0), is_remote_(false) { std::memset(&data_, 0, sizeof(data_)); }
~FastSparseVector() {
clear();
}
FastSparseVector(const FastSparseVector& other) {
std::memcpy(this, &other, sizeof(FastSparseVector));
if (is_remote_) data_.rbmap = new std::map<int, T>(*data_.rbmap);
}
void erase(int k) {
if (is_remote_) {
data_.rbmap->erase(k);
} else {
for (int i = 0; i < local_size_; ++i) {
if (data_.local[i].first() == k) {
for (int j = i+1; j < local_size_; ++j) {
data_.local[j-1].first() = data_.local[j].first();
data_.local[j-1].second() = data_.local[j].second();
}
}
}
}
}
const FastSparseVector<T>& operator=(const FastSparseVector<T>& other) {
if (&other == this) return *this;
clear();
std::memcpy(this, &other, sizeof(FastSparseVector));
if (is_remote_)
data_.rbmap = new std::map<int, T>(*data_.rbmap);
return *this;
}
T const& get_singleton() const {
assert(size()==1);
return begin()->second;
}
bool nonzero(int k) const {
return static_cast<bool>(value(k));
}
inline void set_value(int k, const T& v) {
get_or_create_bin(k) = v;
}
inline T& add_value(int k, const T& v) {
return get_or_create_bin(k) += v;
}
inline T get(int k) const {
return value(k);
}
inline T value(int k) const {
if (is_remote_) {
typename std::map<int, T>::const_iterator it = data_.rbmap->find(k);
if (it != data_.rbmap->end()) return it->second;
} else {
for (int i = 0; i < local_size_; ++i) {
const PairIntT<T>& p = data_.local[i];
if (p.first() == k) return p.second();
}
}
return T();
}
T l2norm_sq() const {
T sum = T();
for (const_iterator it = begin(), e = end(); it != e; ++it)
sum += it->second * it->second;
return sum;
}
T l2norm() const {
return sqrt(l2norm_sq());
}
T pnorm(const double p) const {
T sum = T();
for (const_iterator it = begin(), e = end(); it != e; ++it)
sum += pow(fabs(it->second), p);
return pow(sum, 1.0 / p);
}
// if values are binary, gives |A intersect B|/|A union B|
template<typename S>
S tanimoto_coef(const FastSparseVector<S> &vec) const {
const S dp=dot(vec);
return dp/(l2norm_sq()+vec.l2norm_sq()-dp);
}
inline size_t size() const {
if (is_remote_)
return data_.rbmap->size();
else
return local_size_;
}
inline void clear() {
if (is_remote_) delete data_.rbmap;
is_remote_ = false;
local_size_ = 0;
}
inline bool empty() const {
return size() == 0;
}
inline FastSparseVector& operator+=(const FastSparseVector& other) {
if (empty()) { *this = other; return *this; }
const typename FastSparseVector::const_iterator end = other.end();
for (typename FastSparseVector::const_iterator it = other.begin(); it != end; ++it) {
get_or_create_bin(it->first) += it->second;
}
return *this;
}
template <typename O>
inline FastSparseVector& operator+=(const FastSparseVector<O>& other) {
const typename FastSparseVector<O>::const_iterator end = other.end();
for (typename FastSparseVector<O>::const_iterator it = other.begin(); it != end; ++it) {
get_or_create_bin(it->first) += it->second;
}
return *this;
}
inline FastSparseVector& operator-=(const FastSparseVector& other) {
const typename FastSparseVector::const_iterator end = other.end();
for (typename FastSparseVector::const_iterator it = other.begin(); it != end; ++it) {
get_or_create_bin(it->first) -= it->second;
}
return *this;
}
inline FastSparseVector& operator*=(const T& scalar) {
if (is_remote_) {
const typename std::map<int, T>::iterator end = data_.rbmap->end();
for (typename std::map<int, T>::iterator it = data_.rbmap->begin(); it != end; ++it)
it->second *= scalar;
} else {
for (int i = 0; i < local_size_; ++i)
data_.local[i].second() *= scalar;
}
return *this;
}
inline FastSparseVector& operator/=(const T& scalar) {
if (is_remote_) {
const typename std::map<int, T>::iterator end = data_.rbmap->end();
for (typename std::map<int, T>::iterator it = data_.rbmap->begin(); it != end; ++it)
it->second /= scalar;
} else {
for (int i = 0; i < local_size_; ++i)
data_.local[i].second() /= scalar;
}
return *this;
}
FastSparseVector<T> erase_zeros(const T& EPSILON = 1e-4) const {
FastSparseVector<T> o;
for (const_iterator it = begin(); it != end(); ++it) {
if (fabs(it->second) > EPSILON) o.set_value(it->first, it->second);
}
return o;
}
const_iterator begin() const {
return const_iterator(*this, false);
}
const_iterator end() const {
return const_iterator(*this, true);
}
void init_vector(std::vector<T> *vp) const {
init_vector(*vp);
}
void init_vector(std::vector<T> &v) const {
v.clear();
for (const_iterator i=begin(),e=end();i!=e;++i)
extend_vector(v,i->first)=i->second;
}
T dot(const std::vector<T>& v) const {
T res = T();
for (const_iterator it = begin(), e = end(); it != e; ++it)
if (it->first < v.size()) res += it->second * v[it->first];
return res;
}
T dot(const FastSparseVector<T>& other) const {
T res = T();
for (const_iterator it = begin(), e = end(); it != e; ++it)
res += other.value(it->first) * it->second;
return res;
}
bool operator==(const FastSparseVector<T>& other) const {
if (other.size() != size()) return false;
for (const_iterator it = begin(), e = end(); it != e; ++it) {
if (other.value(it->first) != it->second) return false;
}
return true;
}
void swap(FastSparseVector<T>& other) {
char t[sizeof(data_)];
std::swap(other.is_remote_, is_remote_);
std::swap(other.local_size_, local_size_);
std::memcpy(t, &other.data_, sizeof(data_));
std::memcpy(&other.data_, &data_, sizeof(data_));
std::memcpy(&data_, t, sizeof(data_));
}
private:
static inline T& extend_vector(std::vector<T> &v,int i) {
if (i>=v.size())
v.resize(i+1);
return v[i];
}
inline T& get_or_create_bin(int k) {
if (is_remote_) {
return (*data_.rbmap)[k];
} else {
for (int i = 0; i < local_size_; ++i)
if (data_.local[i].first() == k) return data_.local[i].second();
}
assert(!is_remote_);
// currently local!
if (local_size_ < LOCAL_MAX) {
PairIntT<T>& p = data_.local[local_size_];
++local_size_;
p.first() = k;
p.second() = T();
return p.second();
} else {
swap_local_rbmap();
return (*data_.rbmap)[k];
}
}
void swap_local_rbmap() {
if (is_remote_) { // data is in rbmap, move to local
assert(data_.rbmap->size() < LOCAL_MAX);
const std::map<int, T>* m = data_.rbmap;
local_size_ = m->size();
int i = 0;
for (typename std::map<int, T>::const_iterator it = m->begin();
it != m->end(); ++it) {
data_.local[i] = *it;
++i;
}
is_remote_ = false;
} else { // data is local, move to rbmap
std::map<int, T>* m = new std::map<int, T>(&data_.local[0], &data_.local[local_size_]);
data_.rbmap = m;
is_remote_ = true;
}
}
union {
PairIntT<T> local[LOCAL_MAX];
std::map<int, T>* rbmap;
} data_;
unsigned char local_size_;
bool is_remote_;
#if HAVE_BOOST_ARCHIVE_TEXT_OARCHIVE_HPP
private:
friend class boost::serialization::access;
template<class Archive>
void save(Archive & ar, const unsigned int version) const {
(void) version;
int eff_size = size();
const_iterator it = this->begin();
if (eff_size > 0) {
// 0 index is reserved as empty
if (it->first == 0) { ++it; --eff_size; }
}
ar & eff_size;
while (it != this->end()) {
const std::pair<const std::string&, const T&> wire_pair(FD::Convert(it->first), it->second);
ar & wire_pair;
++it;
}
}
template<class Archive>
void load(Archive & ar, const unsigned int version) {
(void) version;
this->clear();
int sz; ar & sz;
for (int i = 0; i < sz; ++i) {
std::pair<std::string, T> wire_pair;
ar & wire_pair;
this->set_value(FD::Convert(wire_pair.first), wire_pair.second);
}
}
BOOST_SERIALIZATION_SPLIT_MEMBER()
#endif
};
#if HAVE_BOOST_ARCHIVE_TEXT_OARCHIVE_HPP
BOOST_CLASS_TRACKING(FastSparseVector<double>,track_never)
#endif
template <typename T>
const FastSparseVector<T> operator+(const FastSparseVector<T>& x, const FastSparseVector<T>& y) {
if (x.size() > y.size()) {
FastSparseVector<T> res(x);
res += y;
return res;
} else {
FastSparseVector<T> res(y);
res += x;
return res;
}
}
template <typename T>
const FastSparseVector<T> operator-(const FastSparseVector<T>& x, const FastSparseVector<T>& y) {
FastSparseVector<T> res(x);
res -= y;
return res;
}
template <class T>
std::size_t hash_value(FastSparseVector<T> const& x) {
assert(!"not implemented");
return 0;
}
#if 0
namespace performance_checks {
// if you get a failure on the next line, you should adjust LOCAL_MAX for
// your architecture
BOOST_STATIC_ASSERT(sizeof(FastSparseVector<float>) == L2_CACHE_LINE);
};
#endif
#endif
|