1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/*
* alignment.h
*
* Created on: May 23, 2013
* Author: lijunhui
*/
#ifndef ALIGNMENT_H_
#define ALIGNMENT_H_
#include <string>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "stringlib.h"
/*
* Note:
* m_vec_s_align.size() may not be equal to the length of source side
*sentence
* due to the last words may not be aligned
*
*/
struct SAlignment {
typedef std::vector<int> SingleAlign;
SAlignment(const char* pszAlign) { fnInitializeAlignment(pszAlign); }
~SAlignment() {}
bool fnIsAligned(int i, bool s) const {
const std::vector<SingleAlign>* palign;
if (s == true)
palign = &m_vec_s_align;
else
palign = &m_vec_t_align;
if ((*palign)[i].size() == 0) return false;
return true;
}
/*
* return true if [b, e] is aligned phrases on source side (if s==true) or on
* the target side (if s==false);
* return false, otherwise.
*/
bool fnIsAlignedPhrase(int b, int e, bool s, int* pob, int* poe) const {
int ob, oe; //[b, e] on the other side
if (s == true)
fnGetLeftRightMost(b, e, m_vec_s_align, ob, oe);
else
fnGetLeftRightMost(b, e, m_vec_t_align, ob, oe);
if (ob == -1) {
if (pob != NULL) (*pob) = -1;
if (poe != NULL) (*poe) = -1;
return false; // no aligned word among [b, e]
}
if (pob != NULL) (*pob) = ob;
if (poe != NULL) (*poe) = oe;
int bb, be; //[b, e] back given [ob, oe] on the other side
if (s == true)
fnGetLeftRightMost(ob, oe, m_vec_t_align, bb, be);
else
fnGetLeftRightMost(ob, oe, m_vec_s_align, bb, be);
if (bb < b || be > e) return false;
return true;
}
bool fnIsAlignedTightPhrase(int b, int e, bool s, int* pob, int* poe) const {
const std::vector<SingleAlign>* palign;
if (s == true)
palign = &m_vec_s_align;
else
palign = &m_vec_t_align;
if ((*palign).size() <= e || (*palign)[b].size() == 0 ||
(*palign)[e].size() == 0)
return false;
return fnIsAlignedPhrase(b, e, s, pob, poe);
}
void fnGetLeftRightMost(int b, int e, bool s, int& ob, int& oe) const {
if (s == true)
fnGetLeftRightMost(b, e, m_vec_s_align, ob, oe);
else
fnGetLeftRightMost(b, e, m_vec_t_align, ob, oe);
}
/*
* look the translation of source[b, e] is continuous or not
* 1) return "Unaligned": if the source[b, e] is translated silently;
* 2) return "Con't": if none of target words in target[.., ..] is exclusively
* aligned to any word outside source[b, e]
* 3) return "Discon't": otherwise;
*/
std::string fnIsContinuous(int b, int e) const {
int ob, oe;
fnGetLeftRightMost(b, e, true, ob, oe);
if (ob == -1) return "Unaligned";
for (int i = ob; i <= oe; i++) {
if (!fnIsAligned(i, false)) continue;
const SingleAlign& a = m_vec_t_align[i];
int j;
for (j = 0; j < a.size(); j++)
if (a[j] >= b && a[j] <= e) break;
if (j == a.size()) return "Discon't";
}
return "Con't";
}
const SingleAlign* fnGetSingleWordAlign(int i, bool s) const {
if (s == true) {
if (i >= m_vec_s_align.size()) return NULL;
return &(m_vec_s_align[i]);
} else {
if (i >= m_vec_t_align.size()) return NULL;
return &(m_vec_t_align[i]);
}
}
private:
void fnGetLeftRightMost(int b, int e, const std::vector<SingleAlign>& align,
int& ob, int& oe) const {
ob = oe = -1;
for (int i = b; i <= e && i < align.size(); i++) {
if (align[i].size() > 0) {
if (align[i][0] < ob || ob == -1) ob = align[i][0];
if (oe < align[i][align[i].size() - 1])
oe = align[i][align[i].size() - 1];
}
}
}
void fnInitializeAlignment(const char* pszAlign) {
m_vec_s_align.clear();
m_vec_t_align.clear();
std::vector<std::string> terms = SplitOnWhitespace(std::string(pszAlign));
int si, ti;
for (size_t i = 0; i < terms.size(); i++) {
sscanf(terms[i].c_str(), "%d-%d", &si, &ti);
while (m_vec_s_align.size() <= si) {
SingleAlign sa;
m_vec_s_align.push_back(sa);
}
while (m_vec_t_align.size() <= ti) {
SingleAlign sa;
m_vec_t_align.push_back(sa);
}
m_vec_s_align[si].push_back(ti);
m_vec_t_align[ti].push_back(si);
}
// sort
for (size_t i = 0; i < m_vec_s_align.size(); i++) {
std::sort(m_vec_s_align[i].begin(), m_vec_s_align[i].end());
}
for (size_t i = 0; i < m_vec_t_align.size(); i++) {
std::sort(m_vec_t_align[i].begin(), m_vec_t_align[i].end());
}
}
private:
std::vector<SingleAlign> m_vec_s_align; // source side words' alignment
std::vector<SingleAlign> m_vec_t_align; // target side words' alignment
};
struct SAlignmentReader {
SAlignmentReader(const char* pszFname) {
m_fpIn = fopen(pszFname, "r");
assert(m_fpIn != NULL);
}
~SAlignmentReader() {
if (m_fpIn != NULL) fclose(m_fpIn);
}
SAlignment* fnReadNextAlignment() {
if (feof(m_fpIn) == true) return NULL;
char* pszLine = new char[100001];
pszLine[0] = '\0';
fgets(pszLine, 10001, m_fpIn);
int iLen = strlen(pszLine);
if (iLen == 0) return NULL;
while (iLen > 0 && pszLine[iLen - 1] > 0 && pszLine[iLen - 1] < 33) {
pszLine[iLen - 1] = '\0';
iLen--;
}
SAlignment* pAlign = new SAlignment(pszLine);
delete[] pszLine;
return pAlign;
}
private:
FILE* m_fpIn;
};
#endif /* ALIGNMENT_H_ */
|