summaryrefslogtreecommitdiff
path: root/training/mpi_extract_features.cc
blob: 6750aa15a598777a44b103a88eeec704ae9fada9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#include <iostream>
#include <sstream>
#include <vector>
#include <cassert>

#include "config.h"
#ifdef HAVE_MPI
#include <boost/mpi.hpp>
#endif
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "ff_register.h"
#include "verbose.h"
#include "filelib.h"
#include "fdict.h"
#include "decoder.h"
#include "weights.h"

using namespace std;
namespace po = boost::program_options;

bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("training_data,t",po::value<string>(),"Training data corpus")
        ("decoder_config,c",po::value<string>(),"Decoder configuration file")
        ("weights,w", po::value<string>(), "(Optional) weights file; weights may affect what features are encountered in pruning configurations")
        ("output_prefix,o",po::value<string>()->default_value("features"),"Output path prefix");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) {
    cerr << "Decode an input set (optionally in parallel using MPI) and write\nout the feature strings encountered.\n";
    cerr << dcmdline_options << endl;
    return false;
  }
  return true;
}

void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c) {
  ReadFile rf(fname);
  istream& in = *rf.stream();
  string line;
  int lc = 0;
  while(in) {
    getline(in, line);
    if (!in) break;
    if (lc % size == rank) c->push_back(line);
    ++lc;
  }
}

static const double kMINUS_EPSILON = -1e-6;

struct TrainingObserver : public DecoderObserver {

  virtual void NotifyDecodingStart(const SentenceMetadata&) {
  }

  // compute model expectations, denominator of objective
  virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) {
  }

  // compute "empirical" expectations, numerator of objective
  virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {
  }
};

#ifdef HAVE_MPI
namespace mpi = boost::mpi;
#endif

int main(int argc, char** argv) {
#ifdef HAVE_MPI
  mpi::environment env(argc, argv);
  mpi::communicator world;
  const int size = world.size(); 
  const int rank = world.rank();
#else
  const int size = 1;
  const int rank = 0;
#endif
  if (size > 1) SetSilent(true);  // turn off verbose decoder output
  register_feature_functions();

  po::variables_map conf;
  if (!InitCommandLine(argc, argv, &conf))
    return false;

  // load cdec.ini and set up decoder
  ReadFile ini_rf(conf["decoder_config"].as<string>());
  Decoder decoder(ini_rf.stream());
  if (decoder.GetConf()["input"].as<string>() != "-") {
    cerr << "cdec.ini must not set an input file\n";
    abort();
  }

  if (FD::UsingPerfectHashFunction()) {
    cerr << "Your configuration file has enabled a cmph hash function. Please disable.\n";
    return 1;
  }

  // load optional weights
  if (conf.count("weights"))
    Weights::InitFromFile(conf["weights"].as<string>(), &decoder.CurrentWeightVector());

  vector<string> corpus;
  ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus);
  assert(corpus.size() > 0);

  TrainingObserver observer;

  if (rank == 0)
    cerr << "Each processor is decoding ~" << corpus.size() << " training examples...\n";

  for (int i = 0; i < corpus.size(); ++i)
    decoder.Decode(corpus[i], &observer);

  {
    ostringstream os;
    os << conf["output_prefix"].as<string>() << '.' << rank << "_of_" << size;
    WriteFile wf(os.str());
    ostream& out = *wf.stream();
    const unsigned num_feats = FD::NumFeats();
    for (unsigned i = 1; i < num_feats; ++i) {
      out << FD::Convert(i) << endl;
    }
    cerr << "Wrote " << os.str() << endl;
  }

#ifdef HAVE_MPI
  world.barrier();
#else
#endif

  return 0;
}