summaryrefslogtreecommitdiff
path: root/training/mpi_batch_optimize.cc
blob: 8f45aef14017636ad4441cb9b75239d5505c87e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#include <sstream>
#include <iostream>
#include <vector>
#include <cassert>
#include <cmath>

#ifdef HAVE_MPI
#include <mpi.h>
#endif

#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "verbose.h"
#include "hg.h"
#include "prob.h"
#include "inside_outside.h"
#include "ff_register.h"
#include "decoder.h"
#include "filelib.h"
#include "optimize.h"
#include "fdict.h"
#include "weights.h"
#include "sparse_vector.h"

using namespace std;
using boost::shared_ptr;
namespace po = boost::program_options;

void SanityCheck(const vector<double>& w) {
  for (int i = 0; i < w.size(); ++i) {
    assert(!isnan(w[i]));
    assert(!isinf(w[i]));
  }
}

struct FComp {
  const vector<double>& w_;
  FComp(const vector<double>& w) : w_(w) {}
  bool operator()(int a, int b) const {
    return fabs(w_[a]) > fabs(w_[b]);
  }
};

void ShowLargestFeatures(const vector<double>& w) {
  vector<int> fnums(w.size());
  for (int i = 0; i < w.size(); ++i)
    fnums[i] = i;
  vector<int>::iterator mid = fnums.begin();
  mid += (w.size() > 10 ? 10 : w.size());
  partial_sort(fnums.begin(), mid, fnums.end(), FComp(w));
  cerr << "TOP FEATURES:";
  for (vector<int>::iterator i = fnums.begin(); i != mid; ++i) {
    cerr << ' ' << FD::Convert(*i) << '=' << w[*i];
  }
  cerr << endl;
}

void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("input_weights,w",po::value<string>(),"Input feature weights file")
        ("training_data,t",po::value<string>(),"Training data")
        ("decoder_config,d",po::value<string>(),"Decoder configuration file")
        ("sharded_input,s",po::value<string>(), "Corpus and grammar files are 'sharded' so each processor loads its own input and grammar file. Argument is the directory containing the shards.")
        ("output_weights,o",po::value<string>()->default_value("-"),"Output feature weights file")
        ("optimization_method,m", po::value<string>()->default_value("lbfgs"), "Optimization method (sgd, lbfgs, rprop)")
	("correction_buffers,M", po::value<int>()->default_value(10), "Number of gradients for LBFGS to maintain in memory")
        ("gaussian_prior,p","Use a Gaussian prior on the weights")
        ("means,u", po::value<string>(), "File containing the means for Gaussian prior")
        ("sigma_squared", po::value<double>()->default_value(1.0), "Sigma squared term for spherical Gaussian prior");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data") | conf->count("sharded_input")) || !conf->count("decoder_config")) {
    cerr << dcmdline_options << endl;
#ifdef HAVE_MPI
    MPI::Finalize();
#endif
    exit(1);
  }
  if (conf->count("training_data") && conf->count("sharded_input")) {
    cerr << "Cannot specify both --training_data and --sharded_input\n";
#ifdef HAVE_MPI
    MPI::Finalize();
#endif
    exit(1);
  }
}

void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c) {
  ReadFile rf(fname);
  istream& in = *rf.stream();
  string line;
  int lc = 0;
  while(in) {
    getline(in, line);
    if (!in) break;
    if (lc % size == rank) c->push_back(line);
    ++lc;
  }
}

static const double kMINUS_EPSILON = -1e-6;

struct TrainingObserver : public DecoderObserver {
  void Reset() {
    acc_grad.clear();
    acc_obj = 0;
    total_complete = 0;
  } 

  void SetLocalGradientAndObjective(vector<double>* g, double* o) const {
    *o = acc_obj;
    for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it)
      (*g)[it->first] = it->second;
  }

  virtual void NotifyDecodingStart(const SentenceMetadata& smeta) {
    cur_model_exp.clear();
    cur_obj = 0;
    state = 1;
  }

  // compute model expectations, denominator of objective
  virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
    assert(state == 1);
    state = 2;
    const prob_t z = InsideOutside<prob_t,
                                   EdgeProb,
                                   SparseVector<prob_t>,
                                   EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp);
    cur_obj = log(z);
    cur_model_exp /= z;
  }

  // compute "empirical" expectations, numerator of objective
  virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {
    assert(state == 2);
    state = 3;
    SparseVector<prob_t> ref_exp;
    const prob_t ref_z = InsideOutside<prob_t,
                                       EdgeProb,
                                       SparseVector<prob_t>,
                                       EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp);
    ref_exp /= ref_z;

    double log_ref_z;
#if 0
    if (crf_uniform_empirical) {
      log_ref_z = ref_exp.dot(feature_weights);
    } else {
      log_ref_z = log(ref_z);
    }
#else
    log_ref_z = log(ref_z);
#endif

    // rounding errors means that <0 is too strict
    if ((cur_obj - log_ref_z) < kMINUS_EPSILON) {
      cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl;
      exit(1);
    }
    assert(!isnan(log_ref_z));
    ref_exp -= cur_model_exp;
    acc_grad -= ref_exp;
    acc_obj += (cur_obj - log_ref_z);
  }

  virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) {
    if (state == 3) {
      ++total_complete;
    } else {
    }
  }

  int total_complete;
  SparseVector<prob_t> cur_model_exp;
  SparseVector<prob_t> acc_grad;
  double acc_obj;
  double cur_obj;
  int state;
};

void ReadConfig(const string& ini, vector<string>* out) {
  ReadFile rf(ini);
  istream& in = *rf.stream();
  while(in) {
    string line;
    getline(in, line);
    if (!in) continue;
    out->push_back(line);
  }
}

void StoreConfig(const vector<string>& cfg, istringstream* o) {
  ostringstream os;
  for (int i = 0; i < cfg.size(); ++i) { os << cfg[i] << endl; }
  o->str(os.str());
}

int main(int argc, char** argv) {
#ifdef HAVE_MPI
  MPI::Init(argc, argv);
  const int size = MPI::COMM_WORLD.Get_size(); 
  const int rank = MPI::COMM_WORLD.Get_rank();
#else
  const int size = 1;
  const int rank = 0;
#endif
  SetSilent(true);  // turn off verbose decoder output
  register_feature_functions();

  po::variables_map conf;
  InitCommandLine(argc, argv, &conf);

  string shard_dir;
  if (conf.count("sharded_input")) {
    shard_dir = conf["sharded_input"].as<string>();
    if (!DirectoryExists(shard_dir)) {
      if (rank == 0) cerr << "Can't find shard directory: " << shard_dir << endl;
#ifdef HAVE_MPI
      MPI::Finalize();
#endif
      return 1;
    }
    if (rank == 0)
      cerr << "Shard directory: " << shard_dir << endl;
  }

  // load initial weights
  Weights weights;
  if (rank == 0) { cerr << "Loading weights...\n"; }
  weights.InitFromFile(conf["input_weights"].as<string>());
  if (rank == 0) { cerr << "Done loading weights.\n"; }

  // freeze feature set (should be optional?)
  const bool freeze_feature_set = true;
  if (freeze_feature_set) FD::Freeze();

  // load cdec.ini and set up decoder
  vector<string> cdec_ini;
  ReadConfig(conf["decoder_config"].as<string>(), &cdec_ini);
  if (shard_dir.size()) {
    if (rank == 0) {
      for (int i = 0; i < cdec_ini.size(); ++i) {
        if (cdec_ini[i].find("grammar=") == 0) {
          cerr << "!!! using sharded input and " << conf["decoder_config"].as<string>() << " contains a grammar specification:\n" << cdec_ini[i] << "\n  VERIFY THAT THIS IS CORRECT!\n";
        }
      }
    }
    ostringstream g;
    g << "grammar=" << shard_dir << "/grammar." << rank << "_of_" << size << ".gz";
    cdec_ini.push_back(g.str());
  }
  istringstream ini;
  StoreConfig(cdec_ini, &ini);
  if (rank == 0) cerr << "Loading grammar...\n";
  Decoder* decoder = new Decoder(&ini);
  if (decoder->GetConf()["input"].as<string>() != "-") {
    cerr << "cdec.ini must not set an input file\n";
#ifdef HAVE_MPI
    MPI::COMM_WORLD.Abort(1);
#endif
  }
  if (rank == 0) cerr << "Done loading grammar!\n";

  const int num_feats = FD::NumFeats();
  if (rank == 0) cerr << "Number of features: " << num_feats << endl;
  const bool gaussian_prior = conf.count("gaussian_prior");
  vector<double> means(num_feats, 0);
  if (conf.count("means")) {
    if (!gaussian_prior) {
      cerr << "Don't use --means without --gaussian_prior!\n";
      exit(1);
    }
    Weights wm; 
    wm.InitFromFile(conf["means"].as<string>());
    if (num_feats != FD::NumFeats()) {
      cerr << "[ERROR] Means file had unexpected features!\n";
      exit(1);
    }
    wm.InitVector(&means);
  }
  shared_ptr<BatchOptimizer> o;
  if (rank == 0) {
    const string omethod = conf["optimization_method"].as<string>();
    if (omethod == "rprop")
      o.reset(new RPropOptimizer(num_feats));  // TODO add configuration
    else
      o.reset(new LBFGSOptimizer(num_feats, conf["correction_buffers"].as<int>()));
    cerr << "Optimizer: " << o->Name() << endl;
  }
  double objective = 0;
  vector<double> lambdas(num_feats, 0.0);
  weights.InitVector(&lambdas);
  if (lambdas.size() != num_feats) {
    cerr << "Initial weights file did not have all features specified!\n  feats="
         << num_feats << "\n  weights file=" << lambdas.size() << endl;
    lambdas.resize(num_feats, 0.0);
  }
  vector<double> gradient(num_feats, 0.0);
  vector<double> rcv_grad(num_feats, 0.0);
  bool converged = false;

  vector<string> corpus;
  if (shard_dir.size()) {
    ostringstream os; os << shard_dir << "/corpus." << rank << "_of_" << size;
    ReadTrainingCorpus(os.str(), 0, 1, &corpus);
    cerr << os.str() << " has " << corpus.size() << " training examples. " << endl;
    if (corpus.size() > 500) { corpus.resize(500); cerr << "  TRUNCATING\n"; }
  } else {
    ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus);
  }
  assert(corpus.size() > 0);

  TrainingObserver observer;
  while (!converged) {
    observer.Reset();
    if (rank == 0) {
      cerr << "Starting decoding... (~" << corpus.size() << " sentences / proc)\n";
    }
    decoder->SetWeights(lambdas);
    for (int i = 0; i < corpus.size(); ++i)
      decoder->Decode(corpus[i], &observer);

    fill(gradient.begin(), gradient.end(), 0);
    fill(rcv_grad.begin(), rcv_grad.end(), 0);
    observer.SetLocalGradientAndObjective(&gradient, &objective);

    double to = 0;
#ifdef HAVE_MPI
    MPI::COMM_WORLD.Reduce(const_cast<double*>(&gradient.data()[0]), &rcv_grad[0], num_feats, MPI::DOUBLE, MPI::SUM, 0);
    MPI::COMM_WORLD.Reduce(&objective, &to, 1, MPI::DOUBLE, MPI::SUM, 0);
    swap(gradient, rcv_grad);
    objective = to;
#endif

    if (rank == 0) {  // run optimizer only on rank=0 node
      if (gaussian_prior) {
        const double sigsq = conf["sigma_squared"].as<double>();
        double norm = 0;
        for (int k = 1; k < lambdas.size(); ++k) {
          const double& lambda_k = lambdas[k];
          if (lambda_k) {
            const double param = (lambda_k - means[k]);
            norm += param * param;
            gradient[k] += param / sigsq;
          }
        }
        const double reg = norm / (2.0 * sigsq);
        cerr << "REGULARIZATION TERM: " << reg << endl;
        objective += reg;
      }
      cerr << "EVALUATION #" << o->EvaluationCount() << " OBJECTIVE: " << objective << endl;
      double gnorm = 0;
      for (int i = 0; i < gradient.size(); ++i)
        gnorm += gradient[i] * gradient[i];
      cerr << "  GNORM=" << sqrt(gnorm) << endl;
      vector<double> old = lambdas;
      int c = 0;
      while (old == lambdas) {
        ++c;
        if (c > 1) { cerr << "Same lambdas, repeating optimization\n"; }
        o->Optimize(objective, gradient, &lambdas);
        assert(c < 5);
      }
      old.clear();
      SanityCheck(lambdas);
      ShowLargestFeatures(lambdas);
      weights.InitFromVector(lambdas);

      converged = o->HasConverged();
      if (converged) { cerr << "OPTIMIZER REPORTS CONVERGENCE!\n"; }

      string fname = "weights.cur.gz";
      if (converged) { fname = "weights.final.gz"; }
      ostringstream vv;
      vv << "Objective = " << objective << "  (eval count=" << o->EvaluationCount() << ")";
      const string svv = vv.str();
      weights.WriteToFile(fname, true, &svv);
    }  // rank == 0
    int cint = converged;
#ifdef HAVE_MPI
    MPI::COMM_WORLD.Bcast(const_cast<double*>(&lambdas.data()[0]), num_feats, MPI::DOUBLE, 0);
    MPI::COMM_WORLD.Bcast(&cint, 1, MPI::INT, 0);
    MPI::COMM_WORLD.Barrier();
#endif
    converged = cint;
  }
#ifdef HAVE_MPI
  MPI::Finalize(); 
#endif
  return 0;
}