summaryrefslogtreecommitdiff
path: root/training/lbl_model.cc
blob: 72d80a56c3bea56c947f4fb1264838d98d23b4be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include <iostream>

#include "config.h"
#ifndef HAVE_EIGEN
  int main() { std::cerr << "Please rebuild with --with-eigen PATH\n"; return 1; }
#else

#include <cmath>

#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include <Eigen/Dense>

#include "m.h"
#include "lattice.h"
#include "stringlib.h"
#include "filelib.h"
#include "tdict.h"

namespace po = boost::program_options;
using namespace std;

bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("iterations,i",po::value<unsigned>()->default_value(5),"Number of iterations of training")
        ("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (0 = uniform, >0 sharpens)")
        ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (argc < 2 || conf->count("help")) {
    cerr << "Usage " << argv[0] << " [OPTIONS] corpus.fr-en\n";
    cerr << dcmdline_options << endl;
    return false;
  }
  return true;
}

int main(int argc, char** argv) {
  po::variables_map conf;
  if (!InitCommandLine(argc, argv, &conf)) return 1;
  const string fname = argv[argc - 1];
  const int ITERATIONS = conf["iterations"].as<unsigned>();
  const double diagonal_tension = conf["diagonal_tension"].as<double>();
  string testset;
  if (conf.count("testset")) testset = conf["testset"].as<string>();

  double tot_len_ratio = 0;
  double mean_srclen_multiplier = 0;
  vector<double> unnormed_a_i;
  for (int iter = 0; iter < ITERATIONS; ++iter) {
    cerr << "ITERATION " << (iter + 1) << endl;
    ReadFile rf(fname);
    istream& in = *rf.stream();
    double likelihood = 0;
    double denom = 0.0;
    int lc = 0;
    bool flag = false;
    string line;
    string ssrc, strg;
    while(true) {
      getline(in, line);
      if (!in) break;
      ++lc;
      if (lc % 1000 == 0) { cerr << '.'; flag = true; }
      if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; }
      ParseTranslatorInput(line, &ssrc, &strg);
      Lattice src, trg;
      LatticeTools::ConvertTextToLattice(ssrc, &src);
      LatticeTools::ConvertTextToLattice(strg, &trg);
      if (src.size() == 0 || trg.size() == 0) {
        cerr << "Error: " << lc << "\n" << line << endl;
        assert(src.size() > 0);
        assert(trg.size() > 0);
      }
      if (src.size() > unnormed_a_i.size())
        unnormed_a_i.resize(src.size());
      if (iter == 0)
        tot_len_ratio += static_cast<double>(trg.size()) / static_cast<double>(src.size());
      denom += trg.size();
      vector<double> probs(src.size() + 1);
      bool first_al = true;  // used for write_alignments
      for (int j = 0; j < trg.size(); ++j) {
        const WordID& f_j = trg[j][0].label;
        double sum = 0;
        const double j_over_ts = double(j) / trg.size();
        double prob_a_i = 1.0 / src.size();
        double az = 0;
        for (int ta = 0; ta < src.size(); ++ta) {
          unnormed_a_i[ta] = exp(-fabs(double(ta) / src.size() - j_over_ts) * diagonal_tension);
          az += unnormed_a_i[ta];
        }
        for (int i = 1; i <= src.size(); ++i) {
          prob_a_i = unnormed_a_i[i-1] / az;
          probs[i] = 1; // tt.prob(src[i-1][0].label, f_j) * prob_a_i;
          sum += probs[i];
        }
      }
    }

    // log(e) = 1.0
    double base2_likelihood = likelihood / log(2);

    if (flag) { cerr << endl; }
    if (iter == 0) {
      mean_srclen_multiplier = tot_len_ratio / lc;
      cerr << "expected target length = source length * " << mean_srclen_multiplier << endl;
    }
    cerr << "  log_e likelihood: " << likelihood << endl;
    cerr << "  log_2 likelihood: " << base2_likelihood << endl;
    cerr << "   cross entropy: " << (-base2_likelihood / denom) << endl;
    cerr << "      perplexity: " << pow(2.0, -base2_likelihood / denom) << endl;
  }
  return 0;
}

#endif