1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
|
#include "dtrain_net.h"
#include "sample_net.h"
#include "score.h"
#include "update.h"
#include <nanomsg/nn.h>
#include <nanomsg/pair.h>
#include "nn.hpp"
using namespace dtrain;
int
main(int argc, char** argv)
{
// get configuration
po::variables_map conf;
if (!dtrain_net_init(argc, argv, &conf))
exit(1); // something is wrong
const size_t k = conf["k"].as<size_t>();
const size_t N = conf["N"].as<size_t>();
const weight_t margin = conf["margin"].as<weight_t>();
const string master_addr = conf["addr"].as<string>();
const string output_fn = conf["output"].as<string>();
// setup decoder
register_feature_functions();
SetSilent(true);
ReadFile f(conf["decoder_conf"].as<string>());
Decoder decoder(f.stream());
ScoredKbest* observer = new ScoredKbest(k, new PerSentenceBleuScorer(N));
// weights
vector<weight_t>& decoder_weights = decoder.CurrentWeightVector();
SparseVector<weight_t> lambdas, w_average;
if (conf.count("input_weights")) {
Weights::InitFromFile(conf["input_weights"].as<string>(), &decoder_weights);
Weights::InitSparseVector(decoder_weights, &lambdas);
}
cerr << _p4;
// output configuration
cerr << "dtrain_net" << endl << "Parameters:" << endl;
cerr << setw(25) << "k " << k << endl;
cerr << setw(25) << "N " << N << endl;
cerr << setw(25) << "margin " << margin << endl;
cerr << setw(25) << "decoder conf " << "'"
<< conf["decoder_conf"].as<string>() << "'" << endl;
cerr << setw(25) << "output " << output_fn << endl;
// setup socket
nn::socket sock(AF_SP, NN_PAIR);
sock.bind(master_addr.c_str());
string hello = "hello";
sock.send(hello.c_str(), hello.size()+1, 0);
size_t i = 0;
while(true)
{
char *buf = NULL;
string source;
vector<Ngrams> refs;
vector<size_t> rsz;
bool next = true;
size_t sz = sock.recv(&buf, NN_MSG, 0);
if (buf) {
const string in(buf, buf+sz);
nn::freemsg(buf);
cerr << "got input '" << in << "'" << endl;
if (in == "shutdown") { // shut down
cerr << "got shutdown signal" << endl;
next = false;
} else { // translate
vector<string> parts;
boost::algorithm::split_regex(parts, in, boost::regex(" \\|\\|\\| "));
if (parts[0] == "act:translate") {
cerr << "translating ..." << endl;
lambdas.init_vector(&decoder_weights);
observer->dont_score = true;
decoder.Decode(parts[1], observer);
observer->dont_score = false;
vector<ScoredHyp>* samples = observer->GetSamples();
ostringstream os;
cerr << "1best features " << (*samples)[0].f << endl;
PrintWordIDVec((*samples)[0].w, os);
sock.send(os.str().c_str(), os.str().size()+1, 0);
cerr << "> done translating, looping" << endl;
continue;
} else { // learn
cerr << "learning ..." << endl;
source = parts[0];
parts.erase(parts.begin());
for (auto s: parts) {
vector<WordID> r;
vector<string> toks;
boost::split(toks, s, boost::is_any_of(" "));
for (auto tok: toks)
r.push_back(TD::Convert(tok));
refs.emplace_back(MakeNgrams(r, N));
rsz.push_back(r.size());
}
}
}
}
if (!next)
break;
// decode
lambdas.init_vector(&decoder_weights);
observer->SetReference(refs, rsz);
decoder.Decode(source, observer);
vector<ScoredHyp>* samples = observer->GetSamples();
cerr << "samples size " << samples->size() << endl;
// get pairs and update
SparseVector<weight_t> updates;
CollectUpdates(samples, updates, margin);
cerr << "updates size " << updates.size() << endl;
cerr << "lambdas before " << lambdas << endl;
//lambdas.plus_eq_v_times_s(updates, 1.0); // FIXME: learning rate?
cerr << "lambdas after " << lambdas << endl;
i++;
cerr << "> done learning, looping" << endl;
string done = "done";
sock.send(done.c_str(), done.size()+1, 0);
} // input loop
if (output_fn != "") {
cerr << "writing final weights to '" << output_fn << "'" << endl;
lambdas.init_vector(decoder_weights);
Weights::WriteToFile(output_fn, decoder_weights, true);
}
string shutdown = "off";
sock.send(shutdown.c_str(), shutdown.size()+1, 0);
cerr << "shutting down, goodbye" << endl;
return 0;
}
|