summaryrefslogtreecommitdiff
path: root/training/dtrain/dtrain_net_interface.cc
blob: 6c603040a8c6f567a41643aee138c2ed26e07447 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#include "dtrain_net.h"
#include "sample_net.h"
#include "score.h"
#include "update.h"

#include <nanomsg/nn.h>
#include <nanomsg/pair.h>
#include "nn.hpp"

using namespace dtrain;

int
main(int argc, char** argv)
{
  // get configuration
  po::variables_map conf;
  if (!dtrain_net_init(argc, argv, &conf))
    exit(1); // something is wrong
  const size_t k              = conf["k"].as<size_t>();
  const size_t N              = conf["N"].as<size_t>();
  const weight_t margin       = conf["margin"].as<weight_t>();
  const string master_addr    = conf["addr"].as<string>();
  const string output_fn      = conf["output"].as<string>();

  // setup decoder
  register_feature_functions();
  SetSilent(true);
  ReadFile f(conf["decoder_conf"].as<string>());
  Decoder decoder(f.stream());
  ScoredKbest* observer = new ScoredKbest(k, new PerSentenceBleuScorer(N));

  // weights
  vector<weight_t>& decoder_weights = decoder.CurrentWeightVector();
  SparseVector<weight_t> lambdas, w_average;
  if (conf.count("input_weights")) {
    Weights::InitFromFile(conf["input_weights"].as<string>(), &decoder_weights);
    Weights::InitSparseVector(decoder_weights, &lambdas);
  }

  cerr << _p4;
  // output configuration
  cerr << "dtrain_net" << endl << "Parameters:" << endl;
  cerr << setw(25) << "k " << k << endl;
  cerr << setw(25) << "N " << N << endl;
  cerr << setw(25) << "margin " << margin << endl;
  cerr << setw(25) << "decoder conf " << "'"
       << conf["decoder_conf"].as<string>() << "'" << endl;
  cerr << setw(25) << "output " << output_fn << endl;

  // setup socket
  nn::socket sock(AF_SP, NN_PAIR);
  sock.bind(master_addr.c_str());
  string hello = "hello";
  sock.send(hello.c_str(), hello.size()+1, 0);

  size_t i = 0;
  while(true)
  {
    char *buf = NULL;
    string source;
    vector<Ngrams> refs;
    vector<size_t> rsz;
    bool next = true;
    size_t sz = sock.recv(&buf, NN_MSG, 0);
    if (buf) {
      const string in(buf, buf+sz);
      nn::freemsg(buf);
      cerr << "got input '" << in << "'" << endl;
      if (in == "shutdown") { // shut down
        cerr << "got shutdown signal" << endl;
        next = false;
      } else { // translate
        vector<string> parts;
        boost::algorithm::split_regex(parts, in, boost::regex(" \\|\\|\\| "));
        if (parts[0] == "act:translate") {
          cerr << "translating ..." << endl;
          lambdas.init_vector(&decoder_weights);
          observer->dont_score = true;
          decoder.Decode(parts[1], observer);
          observer->dont_score = false;
          vector<ScoredHyp>* samples = observer->GetSamples();
          ostringstream os;
          cerr << "1best features " << (*samples)[0].f << endl;
          PrintWordIDVec((*samples)[0].w, os);
          sock.send(os.str().c_str(), os.str().size()+1, 0);
          cerr << "> done translating, looping" << endl;
          continue;
        } else { // learn
          cerr << "learning ..." << endl;
          source = parts[0];
          parts.erase(parts.begin());
          for (auto s: parts) {
            vector<WordID> r;
            vector<string> toks;
            boost::split(toks, s, boost::is_any_of(" "));
            for (auto tok: toks)
              r.push_back(TD::Convert(tok));
            refs.emplace_back(MakeNgrams(r, N));
            rsz.push_back(r.size());
          }
        }
      }
    }
    
    if (!next)
      break;

    // decode
    lambdas.init_vector(&decoder_weights);
    observer->SetReference(refs, rsz);
    decoder.Decode(source, observer);
    vector<ScoredHyp>* samples = observer->GetSamples();
    cerr << "samples size " << samples->size() << endl;

    // get pairs and update
    SparseVector<weight_t> updates;
    CollectUpdates(samples, updates, margin);
    cerr << "updates size " << updates.size() << endl;
    cerr << "lambdas before " << lambdas << endl;
    lambdas.plus_eq_v_times_s(updates, 1.0); // FIXME: learning rate?
    cerr << "lambdas after " << lambdas << endl;
    i++;

    cerr << "> done learning, looping" << endl;
    string done = "done";
    sock.send(done.c_str(), done.size()+1, 0);
  } // input loop
  
  if (output_fn != "") {
    cerr << "writing final weights to '" << output_fn << "'" << endl;
    lambdas.init_vector(decoder_weights);
    Weights::WriteToFile(output_fn, decoder_weights, true);
  }

  string shutdown = "off";
  sock.send(shutdown.c_str(), shutdown.size()+1, 0);

  cerr << "shutting down, goodbye" << endl;

  return 0;
}