summaryrefslogtreecommitdiff
path: root/training/crf/mpi_baum_welch.cc
blob: d69b1769657ed35182f0d9ea8b192d092d806c02 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#include <sstream>
#include <iostream>
#include <vector>
#include <cassert>
#include <cmath>

#include "config.h"
#ifdef HAVE_MPI
#include <boost/mpi/timer.hpp>
#include <boost/mpi.hpp>
namespace mpi = boost::mpi;
#endif

#include <boost/unordered_map.hpp>
#include <boost/functional/hash.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "sentence_metadata.h"
#include "verbose.h"
#include "hg.h"
#include "prob.h"
#include "inside_outside.h"
#include "ff_register.h"
#include "decoder.h"
#include "filelib.h"
#include "stringlib.h"
#include "fdict.h"
#include "weights.h"
#include "sparse_vector.h"

using namespace std;
namespace po = boost::program_options;

bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("input_weights,w",po::value<string>(),"Input feature weights file")
        ("iterations,n",po::value<unsigned>()->default_value(50), "Number of training iterations")
        ("training_data,t",po::value<string>(),"Training data")
        ("decoder_config,c",po::value<string>(),"Decoder configuration file");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);
  
  po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data")) || !conf->count("decoder_config")) {
    cerr << dcmdline_options << endl;
    return false;
  }
  return true;
}

void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c) {
  ReadFile rf(fname);
  istream& in = *rf.stream();
  string line;
  int lc = 0;
  while(in) {
    getline(in, line);
    if (!in) break;
    if (lc % size == rank) c->push_back(line);
    ++lc;
  }
}

static const double kMINUS_EPSILON = -1e-6;

struct TrainingObserver : public DecoderObserver {
  void Reset() {
    acc_grad.clear();
    acc_obj = 0;
    total_complete = 0;
    trg_words = 0;
  } 

  void SetLocalGradientAndObjective(vector<double>* g, double* o) const {
    *o = acc_obj;
    for (SparseVector<double>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it)
      (*g)[it->first] = it->second;
  }

  virtual void NotifyDecodingStart(const SentenceMetadata& smeta) {
    state = 1;
  }

  // compute model expectations, denominator of objective
  virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) {
    assert(state == 1);
    trg_words += smeta.GetSourceLength();
    state = 2;
    SparseVector<prob_t> exps;
    const prob_t z = InsideOutside<prob_t,
                                   EdgeProb,
                                   SparseVector<prob_t>,
                                   EdgeFeaturesAndProbWeightFunction>(*hg, &exps);
    exps /= z;
    for (SparseVector<prob_t>::iterator it = exps.begin(); it != exps.end(); ++it)
      acc_grad.add_value(it->first, it->second.as_float());

    acc_obj += log(z);
  }

  // compute "empirical" expectations, numerator of objective
  virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) {
    cerr << "Shouldn't get an alignment forest!\n";
    abort();
  }

  virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) {
    ++total_complete;
  }

  int total_complete;
  SparseVector<double> acc_grad;
  double acc_obj;
  unsigned trg_words;
  int state;
};

void ReadConfig(const string& ini, vector<string>* out) {
  ReadFile rf(ini);
  istream& in = *rf.stream();
  while(in) {
    string line;
    getline(in, line);
    if (!in) continue;
    out->push_back(line);
  }
}

void StoreConfig(const vector<string>& cfg, istringstream* o) {
  ostringstream os;
  for (int i = 0; i < cfg.size(); ++i) { os << cfg[i] << endl; }
  o->str(os.str());
}

#if 0
template <typename T>
struct VectorPlus : public binary_function<vector<T>, vector<T>, vector<T> >  {
  vector<T> operator()(const vector<int>& a, const vector<int>& b) const {
    assert(a.size() == b.size());
    vector<T> v(a.size());
    transform(a.begin(), a.end(), b.begin(), v.begin(), plus<T>()); 
    return v;
  } 
}; 
#endif

int main(int argc, char** argv) {
#ifdef HAVE_MPI
  mpi::environment env(argc, argv);
  mpi::communicator world;
  const int size = world.size(); 
  const int rank = world.rank();
#else
  const int size = 1;
  const int rank = 0;
#endif
  SetSilent(true);  // turn off verbose decoder output
  register_feature_functions();

  po::variables_map conf;
  if (!InitCommandLine(argc, argv, &conf)) return 1;
  const unsigned iterations = conf["iterations"].as<unsigned>();

  // load cdec.ini and set up decoder
  vector<string> cdec_ini;
  ReadConfig(conf["decoder_config"].as<string>(), &cdec_ini);
  istringstream ini;
  StoreConfig(cdec_ini, &ini);
  Decoder* decoder = new Decoder(&ini);
  if (decoder->GetConf()["input"].as<string>() != "-") {
    cerr << "cdec.ini must not set an input file\n";
    return 1;
  }

  // load initial weights
  if (rank == 0) { cerr << "Loading weights...\n"; }
  vector<weight_t>& lambdas = decoder->CurrentWeightVector();
  Weights::InitFromFile(conf["input_weights"].as<string>(), &lambdas);
  if (rank == 0) { cerr << "Done loading weights.\n"; }

  // freeze feature set (should be optional?)
  const bool freeze_feature_set = true;
  if (freeze_feature_set) FD::Freeze();

  const int num_feats = FD::NumFeats();
  if (rank == 0) cerr << "Number of features: " << num_feats << endl;
  lambdas.resize(num_feats);

  vector<double> gradient(num_feats, 0.0);
  vector<double> rcv_grad;
  rcv_grad.clear();
  bool converged = false;

  vector<string> corpus, test_corpus;
  ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus);
  assert(corpus.size() > 0);
  if (conf.count("test_data"))
    ReadTrainingCorpus(conf["test_data"].as<string>(), rank, size, &test_corpus);

  // build map from feature id to the accumulator that should normalize
  boost::unordered_map<std::string, boost::unordered_map<int, double>, boost::hash<std::string> > ccs;
  vector<boost::unordered_map<int, double>* > cpd_to_acc;
  if (rank == 0) {
    cpd_to_acc.resize(num_feats);
    for (unsigned f = 1; f < num_feats; ++f) {
      string normalizer;
      //0 ||| 7 9 ||| Bi:BOS_7=1 Bi:7_9=1 Bi:9_EOS=1 Id:a:7=1 Uni:7=1 Id:b:9=1 Uni:9=1 ||| 0
      const string& fstr = FD::Convert(f);
      if (fstr.find("Bi:") == 0) {
        size_t pos = fstr.rfind('_');
        if (pos < fstr.size())
          normalizer = fstr.substr(0, pos);
      } else if (fstr.find("Id:") == 0) {
        size_t pos = fstr.rfind(':');
        if (pos < fstr.size()) {
          normalizer = "Emit:";
          normalizer += fstr.substr(pos);
        }
      }
      if (normalizer.size() > 0) {
        boost::unordered_map<int, double>& acc = ccs[normalizer];
        cpd_to_acc[f] = &acc;
      }
    }
  }

  TrainingObserver observer;
  int iteration = 0;
  while (!converged) {
    ++iteration;
    observer.Reset();
#ifdef HAVE_MPI
    mpi::timer timer;
    world.barrier();
#endif
    if (rank == 0) {
      cerr << "Starting decoding... (~" << corpus.size() << " sentences / proc)\n";
      cerr << "  Testset size: " << test_corpus.size() << " sentences / proc)\n";
      for(boost::unordered_map<string, boost::unordered_map<int,double>, boost::hash<string> >::iterator it = ccs.begin(); it != ccs.end(); ++it)
        it->second.clear();
    }
    for (int i = 0; i < corpus.size(); ++i)
      decoder->Decode(corpus[i], &observer);
    cerr << "  process " << rank << '/' << size << " done\n";
    fill(gradient.begin(), gradient.end(), 0);
    double objective = 0;
    observer.SetLocalGradientAndObjective(&gradient, &objective);

    unsigned total_words = 0;
#ifdef HAVE_MPI
    double to = 0;
    rcv_grad.resize(num_feats, 0.0);
    mpi::reduce(world, &gradient[0], gradient.size(), &rcv_grad[0], plus<double>(), 0);
    swap(gradient, rcv_grad);
    rcv_grad.clear();

    reduce(world, observer.trg_words, total_words, std::plus<unsigned>(), 0);
    mpi::reduce(world, objective, to, plus<double>(), 0);
    objective = to;
#else
    total_words = observer.trg_words;
#endif
    if (rank == 0) {  // run optimizer only on rank=0 node
      cerr << "TRAINING CORPUS: ln p(x)=" << objective << "\t log_2 p(x) = " << (objective/log(2)) << "\t cross entropy = " << (objective/log(2) / total_words) << "\t ppl = " << pow(2, (-objective/log(2) / total_words)) << endl;
      for (unsigned f = 1; f < num_feats; ++f) {
        boost::unordered_map<int, double>* m = cpd_to_acc[f];
        if (m && gradient[f]) {
          (*m)[f] += gradient[f];
        }
        for(boost::unordered_map<string, boost::unordered_map<int,double>, boost::hash<string> >::iterator it = ccs.begin(); it != ccs.end(); ++it) {
          const boost::unordered_map<int,double>& ccs = it->second;
          double z = 0;
          for (boost::unordered_map<int,double>::const_iterator ci = ccs.begin(); ci != ccs.end(); ++ci)
            z += ci->second + 1e-09;
          double lz = log(z);
          for (boost::unordered_map<int,double>::const_iterator ci = ccs.begin(); ci != ccs.end(); ++ci)
            lambdas[ci->first] = log(ci->second + 1e-09) - lz;
        }
      }
      Weights::SanityCheck(lambdas);
      Weights::ShowLargestFeatures(lambdas);

      converged = (iteration == iterations);

      string fname = "weights.cur.gz";
      if (converged) { fname = "weights.final.gz"; }
      ostringstream vv;
      vv << "Objective = " << objective << "  (eval count=" << iteration << ")";
      const string svv = vv.str();
      Weights::WriteToFile(fname, lambdas, true, &svv);
    }  // rank == 0
    int cint = converged;
#ifdef HAVE_MPI
    mpi::broadcast(world, &lambdas[0], lambdas.size(), 0);
    mpi::broadcast(world, cint, 0);
    if (rank == 0) { cerr << "  ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; }
#endif
    converged = cint;
  }
  return 0;
}