summaryrefslogtreecommitdiff
path: root/training/augment_grammar.cc
blob: df8d4ee8f60323ba66c733942c5d24233f1ce785 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include <iostream>
#include <vector>

#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>

#include "weights.h"
#include "rule_lexer.h"
#include "trule.h"
#include "filelib.h"
#include "tdict.h"
#include "lm/model.hh"
#include "lm/enumerate_vocab.hh"
#include "wordid.h"

namespace po = boost::program_options;
using namespace std;

vector<lm::WordIndex> word_map;
lm::ngram::ProbingModel* ngram;
struct VMapper : public lm::ngram::EnumerateVocab {
  VMapper(vector<lm::WordIndex>* out) : out_(out), kLM_UNKNOWN_TOKEN(0) { out_->clear(); }
  void Add(lm::WordIndex index, const StringPiece &str) {
    const WordID cdec_id = TD::Convert(str.as_string());
    if (cdec_id >= out_->size())
      out_->resize(cdec_id + 1, kLM_UNKNOWN_TOKEN);
    (*out_)[cdec_id] = index;
  }
  vector<lm::WordIndex>* out_;
  const lm::WordIndex kLM_UNKNOWN_TOKEN;
};

bool InitCommandLine(int argc, char** argv, po::variables_map* conf) {
  po::options_description opts("Configuration options");
  opts.add_options()
        ("source_lm,l",po::value<string>(),"Source language LM (KLM)")
        ("collapse_weights,w",po::value<string>(), "Collapse weights into a single feature X using the coefficients from this weights file")
        ("clear_features_after_collapse,c", "After collapse_weights, clear the features except for X")
        ("add_shape_types,s", "Add rule shape types")
        ("extra_lex_feature,x", "Experimental nonlinear lexical weighting feature")
        ("replace_files,r", "Replace files with transformed variants (requires loading full grammar into memory)")
        ("grammar,g", po::value<vector<string> >(), "Input (also output) grammar file(s)");
  po::options_description clo("Command line options");
  clo.add_options()
        ("config", po::value<string>(), "Configuration file")
        ("help,h", "Print this help message and exit");
  po::options_description dconfig_options, dcmdline_options;
  po::positional_options_description p;
  p.add("grammar", -1);
  
  dconfig_options.add(opts);
  dcmdline_options.add(opts).add(clo);

  po::store(po::command_line_parser(argc, argv).options(dcmdline_options).positional(p).run(), *conf);
  if (conf->count("config")) {
    ifstream config((*conf)["config"].as<string>().c_str());
    po::store(po::parse_config_file(config, dconfig_options), *conf);
  }
  po::notify(*conf);

  if (conf->count("help") || conf->count("grammar")==0) {
    cerr << "Usage " << argv[0] << " [OPTIONS] file.scfg [file2.scfg...]\n";
    cerr << dcmdline_options << endl;
    return false;
  }
  return true;
}

lm::WordIndex kSOS;

template <class Model> float Score(const vector<WordID>& str, const Model &model) {
  typename Model::State state, out;
  lm::FullScoreReturn ret;
  float total = 0.0f;
  state = model.NullContextState();

  for (int i = 0; i < str.size(); ++i) {
    lm::WordIndex vocab = ((str[i] < word_map.size() && str[i] > 0) ? word_map[str[i]] : 0);
    if (vocab == kSOS) {
      state = model.BeginSentenceState();
    } else {
      ret = model.FullScore(state, vocab, out);
      total += ret.prob;
      state = out;
    }
  }
  return total;
}

bool extra_feature;
int kSrcLM;
vector<double> col_weights;
bool gather_rules;
bool clear_features = false;
vector<TRulePtr> rules;

static void RuleHelper(const TRulePtr& new_rule, const unsigned int ctf_level, const TRulePtr& coarse_rule, void* extra) {
  static const int kSrcLM = FD::Convert("SrcLM");
  static const int kPC = FD::Convert("PC");
  static const int kX = FD::Convert("X");
  static const int kPhraseModel2 = FD::Convert("PhraseModel_1");
  static const int kNewLex = FD::Convert("NewLex");
  TRulePtr r; r.reset(new TRule(*new_rule));
  if (ngram) r->scores_.set_value(kSrcLM, Score(r->f_, *ngram));
  r->scores_.set_value(kPC, 1.0);
  if (extra_feature) {
    float v = r->scores_.value(kPhraseModel2);
    r->scores_.set_value(kNewLex, v*(v+1));
  }
  if (col_weights.size()) {
    double score = r->scores_.dot(col_weights);
    if (clear_features) r->scores_.clear();
    r->scores_.set_value(kX, score);
  }
  if (gather_rules) {
    rules.push_back(r);
  } else {
    cout << *r << endl;
  }
}


int main(int argc, char** argv) {
  po::variables_map conf;
  if (!InitCommandLine(argc, argv, &conf)) return 1;
  if (conf.count("source_lm")) {
    lm::ngram::Config kconf;
    VMapper vm(&word_map);
    kconf.enumerate_vocab = &vm; 
    ngram = new lm::ngram::ProbingModel(conf["source_lm"].as<string>().c_str(), kconf);
    kSOS = word_map[TD::Convert("<s>")];
    cerr << "Loaded " << (int)ngram->Order() << "-gram KenLM (MapSize=" << word_map.size() << ")\n";
    cerr << "  <s> = " << kSOS << endl;
  } else { ngram = NULL; }
  extra_feature = conf.count("extra_lex_feature") > 0;
  if (conf.count("collapse_weights")) {
    Weights w;
    w.InitFromFile(conf["collapse_weights"].as<string>());
    w.InitVector(&col_weights);
  }
  clear_features = conf.count("clear_features_after_collapse") > 0;
  gather_rules = false;
  bool replace_files = conf.count("replace_files");
  if (replace_files) gather_rules = true;
  vector<string> files = conf["grammar"].as<vector<string> >();
  for (int i=0; i < files.size(); ++i) {
    cerr << "Processing " << files[i] << " ..." << endl;
    if (true) {
      ReadFile rf(files[i]);
      rules.clear();
      RuleLexer::ReadRules(rf.stream(), &RuleHelper, NULL);
    }
    if (replace_files) {
      WriteFile wf(files[i]);
      for (int i = 0; i < rules.size(); ++i) { (*wf.stream()) << *rules[i] << endl; }
    }
  }
  return 0;
}