1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
#!/usr/bin/env python
import sys
import model
import sym
import log
import math
class ContextModel(model.Model):
'''A ContextModel is one that is computed using information
from the Context object'''
def __init__(self, context_manager, default=0.0):
model.Model.__init__(self)
self.wordless = 0
self.initial = None
self.default = default
self.context_manager = context_manager
self.id = self.context_manager.add_model(self)
'''The next feature is true if the model depends in
some way on the entire input sentence; that is, if
it cannot be scored when created, but must be scored
no earlier than during the input method (note that
this is less strict than stateful)'''
self.contextual = True
''' It may seem somewhat counterintuitive that a
ContextModel can be non-contextual, but a good
example is the rule probabilites; although these
are computed using the Context object, they don't
really depend in any way on context'''
'''inherited from model.Model, called once for each input sentence'''
def input(self, fwords, meta):
# all ContextModels must make this call
self.context_manager.input(self, fwords, meta)
'''This function will be called via the input method
only for contextual models'''
def compute_contextual_score(self, r):
return 0.0
'''This function is only called on rule creation for
contextless models'''
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
return 0.0
'''Stateless models should not need to
override this function, unless they define
something for model.TO_GOAL'''
def transition (self, r, antstates, i, j, j1=None):
return (None, 0.0)
def estimate(self, r):
return r.getscore("context", self.id)
def transition(self, r, antstates, i, j, j1=None):
return (None, r.getscore("context", self.id))
def finaltransition(self, state):
return 0.0
def rescore(self, ewords, score):
return score
'''p(e|f)'''
class EgivenF(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
prob = float(paircount)/float(fcount)
return -math.log10(prob)
class CountEF(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
return math.log10(1.0 + float(paircount))
class SampleCountF(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
return math.log10(1.0 + float(fsample_count))
class EgivenFCoherent(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
prob = float(paircount)/float(fsample_count)
#print "paircount=",paircount," , fsample_count=",fsample_count,", prob=",prob
if (prob == 0.0): return 99.0
return -math.log10(prob)
class CoherenceProb(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
prob = float(fcount)/float(fsample_count)
return -math.log10(prob)
class MaxLexEgivenF(ContextModel):
def __init__(self, context_manager, ttable, col=0):
ContextModel.__init__(self, context_manager)
self.ttable = ttable
self.col = col
self.wordless = 0
self.initial = None
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
totalscore = 1.0
fwords = map(sym.tostring, filter(lambda x: not sym.isvar(x), fphrase))
fwords.append("NULL")
ewords = map(sym.tostring, filter(lambda x: not sym.isvar(x), ephrase))
for e in ewords:
maxScore = 0.0
for f in fwords:
score = self.ttable.get_score(f, e, self.col)
#print "score(MaxLexEgivenF) = ",score
if score > maxScore:
maxScore = score
totalscore *= maxScore
if totalscore == 0.0:
return 999
else:
return -math.log10(totalscore)
class MaxLexFgivenE(ContextModel):
def __init__(self, context_manager, ttable, col=1):
ContextModel.__init__(self, context_manager)
self.ttable = ttable
self.col = col
self.wordless = 0
self.initial = None
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
totalscore = 1.0
fwords = map(sym.tostring, filter(lambda x: not sym.isvar(x), fphrase))
ewords = map(sym.tostring, filter(lambda x: not sym.isvar(x), ephrase))
ewords.append("NULL")
for f in fwords:
maxScore = 0.0
for e in ewords:
score = self.ttable.get_score(f, e, self.col)
#print "score(MaxLexFgivenE) = ",score
if score > maxScore:
maxScore = score
totalscore *= maxScore
if totalscore == 0.0:
return 999
else:
return -math.log10(totalscore)
class IsSingletonF(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
return (fcount==1)
class IsSingletonFE(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
return (paircount==1)
class IsNotSingletonF(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
return (fcount>1)
class IsNotSingletonFE(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
return (paircount>1)
class IsFEGreaterThanZero(ContextModel):
def __init__(self, context_manager, default=0.0):
ContextModel.__init__(self, context_manager)
self.contextual = False
def compute_contextless_score(self, fphrase, ephrase, paircount, fcount, fsample_count):
return (paircount > 0.01)
|