summaryrefslogtreecommitdiff
path: root/report/intro_slides/opening_slides.tex
blob: 98cf4f99585a521844acef3f3870d8a368589f56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
\documentclass{beamer}

\mode<presentation>
{
 \usetheme{Boadilla}
 \setbeamercovered{transparent}}

\usepackage[english]{babel}
\usepackage{times}

\usepackage{xcolor}
\usepackage{colortbl}
%\usepackage{subfigure}

\usepackage{fontspec} 
\usepackage{xunicode}
\usepackage{xltxtra}
\usepackage{booktabs}
\newenvironment{CJK}{\fontspec[Scale=0.9]{PMingLiU}}{}
\newenvironment{Geeza}{\fontspec[Scale=0.9]{Geeza Pro}}{}

%% for tables
\newcommand{\mc}{\multicolumn}
\newcommand{\lab}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\ind}[1]{{\fboxsep1pt\raisebox{-.5ex}{\fbox{{\tiny #1}}}}}
\newcommand{\IND}[1]{{\fboxsep1pt\raisebox{0ex}{\fbox{{\small #1}}}}}
\newcommand\production[2]{\ensuremath{\langle\mbox{#1}, \mbox{#2}\rangle}}

%% markup
\newcommand{\buffer}[1]{{\color{blue}\textbf{#1}}}
\newcommand{\pred}[1]{\code{#1}}

%% colors
\newcommand{\textred}[1]{\alert{#1}}
\newcommand{\textblue}[1]{\buffer{#1}}
\definecolor{tablecolor}{cmyk}{0,0.3,0.3,0}
\newcommand{\keytab}[1]{\mc{1}{>{\columncolor{tablecolor}}d}{#1}}

% rules
\newcommand{\psr}[2]{#1 $\rightarrow \langle $ #2 $\rangle$}

\newenvironment{unpacked_itemize}{
\begin{itemize}
  \setlength{\itemsep}{10pt}
  \setlength{\parskip}{0pt}
  \setlength{\parsep}{0pt}
}{\end{itemize}}

\newcommand{\condon}{\hspace{0pt} | \hspace{1pt}}
\definecolor{darkblue}{rgb}{0,0,0.6}
\newcommand{\blueexample}[1]{\textcolor{darkblue}{\rm #1}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newcommand{\ws}{\ensuremath{\vec{w}}}
\newcommand{\pu}{\ensuremath{P_0}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\by}{\mathbf{y}}
\newcommand\bleu{${B{\scriptstyle LEU}}$}


\title[Models of SCFG Induction]{Models of Synchronous Grammar Induction for SMT}

\author[CLSP Workshop 2010]{
  Workshop 2010
  %Phil Blunsom$^1$ \and Trevor Cohn$^2$ \and Chris Dyer$^3$ \and Adam Lopez$^4$
}

\institute[Baltimore]{
  The Center for Speech and Language Processing \\ Johns Hopkins University
%  $^1$University of Oxford\\ 
%  $^2$University of Sheffield\\ 
%  $^3$Carnegie Mellon University\\ 
%  $^4$University of Edinburgh
}
\date[June 21]{June 21, 2010}

%\subject{Unsupervised models of Synchronous Grammar Induction for SMT}

%\pgfdeclareimage[height=1.0cm]{university-logo}{logo}
%\logo{\pgfuseimage{university-logo}}

%\AtBeginSection[]
%{
%  \begin{frame}<beamer>{Outline}
%    %\tableofcontents[currentsection,currentsubsection]
%    \tableofcontents[currentsection]
%  \end{frame}
%}

%\beamerdefaultoverlayspecification{<+->}

\begin{document}

\begin{frame}
  \titlepage
\end{frame}

%\begin{frame}{Outline}
%  \tableofcontents
% You might wish to add the option [pausesections]
%\end{frame}
 
%\begin{frame}{Outline}
%  \tableofcontents
%  % You might wish to add the option [pausesections]
%\end{frame}


\begin{frame}[t]{Team members}
\begin{center}
{\bf Senior Members} \\
  Phil Blunsom (Oxford)\\
  Trevor Cohn (Sheffield)\\
  Adam Lopez (Edinburgh/COE)\\
  Chris Dyer (CMU)\\
  Jonathan Graehl (ISI)\\
\vspace{0.2in}
{\bf Graduate Students} \\
  Jan Botha (Oxford) \\
  Vladimir Eidelman (Maryland) \\
  Ziyuan Wang (JHU) \\
  ThuyLinh Nguyen (CMU) \\
\vspace{0.2in}
{\bf Undergraduate Students} \\
  Olivia Buzek (Maryland) \\
  Desai Chen (CMU) \\
\end{center}
\end{frame}



\begin{frame}[t]{Statistical machine translation}
%\vspace{1.0cm}
\begin{exampleblock}{Arabic $\rightarrow$ English}
  \begin{figure}
    {\centering \includegraphics[scale=0.55]{arabic.pdf}}
  \end{figure}
\vspace{0.10cm}
\end{exampleblock}
\begin{itemize}
  \item Statistical machine translation: Learn how to translate from parallel corpora.
\end{itemize}
\end{frame}


\begin{frame}[t]{Statistical machine translation: successes}
%\vspace{1.0cm}
\begin{exampleblock}{Arabic $\rightarrow$ English}
  \begin{figure}
    {\centering \includegraphics[scale=0.55]{arabic-good.pdf}}
  \end{figure}
\end{exampleblock}
\begin{itemize}
  \item Statistical machine translation: Learn how to translate from parallel corpora 
\end{itemize}
\end{frame}

\begin{frame}[t]{Statistical machine translation: limitations}
%\vspace{1.0cm}
\begin{alertblock}{Chinese $\rightarrow$ English}
  \begin{figure}
    {\centering \includegraphics[scale=0.7]{chinese-bad.pdf}}
  \end{figure}
\end{alertblock}
\begin{itemize}
  \item This workshop: Learn to do it better.
\end{itemize}
\end{frame}


\begin{frame}[t]{Statistical machine translation: limitations}
\vspace{1.0cm}
\begin{exampleblock}{Structural divergence between languages:}
  %\vspace{0.3cm}
  \begin{table}
  \centering
    \only<1>{
    \begin{tabular}{|l|l|}
    \hline
%   {\bf English} & {\bf The plane is faster than the train.}\\
%   \hline
%   Arabic   & \begin{Geeza}الطائرة أسرع من القطار\end{Geeza} \\
%            & (the-plane) (faster) (than) (the train) \\
%   \hline
%   Chinese  & \begin{CJK}飞机   比   火车   快\end{CJK} \\
%            & (plane) (compared-to) (train) (fast) \\
%   \hline
%     \hline
      {\bf English}  & {\bf Who wrote this letter?} \\
      \hline
      Arabic   & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\
               & \textcolor{gray}{(function-word)} (who) (wrote) (this) (the-letter) \\
      \hline
      Chinese  & \begin{CJK}这封  信  是  谁  写  的 ?\end{CJK} \\
               & (this) (letter) (be) (who) (write) (come-from) \textcolor{gray}{(function-word)} \\
      \hline
    \end{tabular}
    }
    \only<2>{
    \begin{tabular}{|l|l|}
    \hline
      {\bf English}  & {\bf \textcolor{blue}{Who} \textcolor{green}{wrote} \textcolor{red}{this} \textcolor{orange}{letter?}} \\
      \hline
      Arabic   & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\
               & \textcolor{gray}{(function-word)} \textcolor{blue}{(who)} \textcolor{green}{(wrote)} \textcolor{red}{(this)} \textcolor{orange}{(the-letter)} \\
      \hline
      Chinese  & \begin{CJK}这封  信  是  谁  写  的 ?\end{CJK} \\
               & (this) (letter) (be) (who) (write) (come-from) \textcolor{gray}{(function-word)} \\
      \hline
    \end{tabular}
    }
    \only<3->{
    \begin{tabular}{|l|l|}
    \hline
      {\bf English}  & {\bf \textcolor{blue}{Who wrote} \textcolor{red}{this letter}?} \\
      \hline
      Arabic   & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\
               & \textcolor{gray}{(function-word)} (who) (wrote) (this) (the-letter) \\
      \hline
      Chinese  & \begin{CJK}\textcolor{red}{这封  信}  \textcolor{blue}{是  谁  写}  的 ?\end{CJK} \\
               & \textcolor{red}{(this) (letter)} \textcolor{blue}{(be) (who) (write) (come-from)} \textcolor{gray}{(function-word)} \\
      \hline
    \end{tabular}
  }
  \end{table}
\end{exampleblock}
\only<4>{
  \begin{itemize}
  \item Phrasal translation equivalences \textcolor{green}{(existing models)}
  \item {\bf Constituent reordering \textcolor{blue}{(this workshop!)}}
  \item Morphology \textcolor{red}{(Next year?)}
  \end{itemize}
}
\end{frame}

\begin{frame}[t]{Statistical machine translation: successes}
\begin{center}
  \includegraphics[scale=0.35]{GoogleTranslateLanguages.pdf}
\end{center}
\end{frame}

\begin{frame}[t]{Workshop overview}
Input:
  \begin{itemize}
%  \item Joshua decoder
  \item Existing procedures for synchronous grammar extraction
  \end{itemize}
\vspace{0.3in}
Output:
  \begin{itemize}
    \item New unsupervised models for large scale synchronous grammar extraction,
%    \item An implementation of this model,
    \item A systematic comparison and analysis of the existing and proposed models,
    \item Extended decoders (cdec/Joshua) capable of working efficiently with these models.
  \end{itemize}
\end{frame}

\begin{frame}[t]{Models of translation}
\begin{exampleblock}{Supervised SCFG: Syntactic Tree-to-String}
\begin{center}
  \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-tsg.pdf}
  \hspace{0.3in}
  \includegraphics[scale=0.55]{JeVeuxTravailler-tsg.pdf}
\end{center}
\end{exampleblock}
\begin{itemize}
\item Strong model of sentence structure.
\item Reliant on a treebank to train the parser.
\end{itemize}
\end{frame}

\begin{frame}[t]{Models of translation}
\begin{block}{Unlabelled SCFG: Hiero}
  \begin{center}
    \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero.pdf}
    \hspace{0.3in}
    \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero.pdf}
  \end{center}
\end{block}
\begin{itemize}
\item Only requires the parallel corpus.
\item But weak model of sentence structure.
\end{itemize}
\end{frame}

%\begin{frame}[t]{Models of translation}
%\begin{block}{Hierarchical}
%  \begin{center}
%    \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero.pdf}
%    \hspace{0.3in}
%    \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero.pdf}
%  \end{center}
%\end{block}
%\end{frame}


%\begin{frame}[t]{Impact}
%  \begin{center}
%    \includegraphics[scale=0.3]{ccb_tree.pdf}
%  \end{center}
%\end{frame}


\begin{frame}[t]{Impact}
Systems using syntax have outperformed those that didn't:
  \begin{center}
    \includegraphics[scale=1.0]{ccb_graph1.pdf}
  \end{center}
\end{frame}


\begin{frame}[t]{Impact}
\vspace{0.5in}
\begin{table}
  \begin{tabular}{l|rr}
    \hline
    Language & Words &  Domain \\ \hline
    English & 4.5M& Financial news \\
    Chinese & 0.5M & Broadcasting news \\ 
    Arabic &  300K (1M planned)  &  News  \\
    Korean & 54K  & Military \\ \hline
  \end{tabular}
\caption{Major treebanks: data size and domain \label{table_treebanks_size}}
\end{table}
\end{frame}


\begin{frame}[t]{Impact}
Parallel corpora far exceed treebanks (millions of words):
  \begin{figure}
    {\centering \includegraphics[scale=0.7]{resource_matrix.pdf}}
  \end{figure}
\end{frame}


\begin{frame}[t]{Models of translation}
\begin{block}{Hierarchical}
  \begin{center}
    \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero-labelled.pdf}
    \hspace{0.3in}
    \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero-labelled.pdf}
  \end{center}
\end{block}
\begin{itemize}
\item \alert{AIM: Implement a large scale open-source synchronous constituent learning system.} 
\item \alert{AIM: Investigate and understand the relationship between the choice of synchronous grammar and SMT performance,} 
\item \alert{AIM: and fix our decoders accordingly.} 
\end{itemize}
\end{frame}


\begin{frame}[t]{Impact}
Systems using syntax have outperformed those that didn't:
  \begin{center}
    \includegraphics[scale=1.0]{ccb_graph2.pdf}
  \end{center}
\end{frame}

\begin{frame}[t]{Evaluation goals}
We will predominately evaluate using BLEU, but also use automatic structured metrics and perform small scale human evaluation:
\vspace{0.25in}
\begin{unpacked_itemize}
\item Evaluate phrasal, syntactic, unsupervised syntactic,
\item Aim 1: Do no harm (not true of existing syntactic approach)
\item Aim 2: Exceed the performance of current non-syntactic systems.
\item Aim 3: Meet or exceed performance of existing syntactic systems.
\end{unpacked_itemize}
\end{frame}

%\begin{frame}[t]{Impact}
%Success will have a significant impact on two areas of CL:
%\vspace{0.25in}
%\begin{unpacked_itemize}
%\item Machine translation
%\begin{unpacked_itemize}
%  \item Make the benefits of richly structured translation models available to a much wider range of researchers and for a wider range of languages.
%% \item Change the research outlook of the field.
%\end{unpacked_itemize}
%\item Grammar induction:
%\begin{unpacked_itemize}
%  \item Provide an empirical validation of state-of-the-art grammar induction techniques.
%\end{unpacked_itemize}
%\end{unpacked_itemize}
%\end{frame}


\begin{frame}[t]{Workshop Streams}
\vspace{0.25in}
\begin{unpacked_itemize}
\item Implement scalable SCFG grammar extraction algorithms.
\item Improve SCFG decoders to effieciently handle the grammars produce.
\item Investigate discriminative training regimes the leverage features extracted from these grammars.
\end{unpacked_itemize}
\end{frame}


%\begin{frame}[t]
%\frametitle{Inducing a STSG given an observed tree:}
%\only<1>{\frametitle{Inducing a STSG given an observed tree:}}
%\only<2->{\frametitle{Existing approach (Galley et al. 2004):}}
%
%\begin{center}
%  \only<1>{\hspace{1mm}\includegraphics[scale=0.45]{full_of_fun_slides_start.pdf}}
%  \only<2>{\includegraphics[scale=0.45]{full_of_fun_slides_waligned.pdf}}
%  \only<3>{\vspace{-2mm}\includegraphics[scale=0.45]{full_of_fun_slides_waligned_overlay.pdf}}
%% \only<4>{\includegraphics[scale=0.4]{full_of_fun_slides_third.pdf}}
%% \only<5>{\includegraphics[scale=0.4]{full_of_fun_slides_forth.pdf}}  
%
%  \only<1>{Training instance}
%  \only<2>{Step 1: word alignment}
%  \only<3>{Step 2: rule extraction heuristic}
%% \only<4>{Step 2: the rules extracted}
%% \only<5>{Step 3: estimate a grammar}
%\end{center}
%\end{frame}


% Il ne veut pas travailler


%\begin{frame}[t]{Models of translation}
%\begin{block}{Hierarchical}
%  \begin{center}
%    \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero-labelled.pdf}
%    \hspace{0.3in}
%    \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero-labelled.pdf}
%  \end{center}
%\end{block}
%\begin{itemize}
%\item \alert{AIM: Implement a large scale open-source synchronous constituent labelling system.} 
%\item \alert{AIM: Investigate and understand the relationship between synchronous constituency and SMT performance.} 
%\end{itemize}
%\end{frame}
%
%\begin{frame}[t]{Models of translation}
%\begin{block}{Hierarchical}
%  \begin{center}
%    \includegraphics[scale=0.5]{JeNeVeuxPasTravailler-Hiero-labelled.pdf}
%    \includegraphics[scale=0.5]{IlNeVeutPasTravailler-Hiero-labelled.pdf}
%  \end{center}
%  \vspace{0.001in}
%\end{block}
%\begin{itemize}
%\item \alert{AIM: Implement a large scale open-source synchronous constituent labelling system.} 
%\item \alert{AIM: Investigate and understand the relationship between synchronous constituency and SMT performance.} 
%\end{itemize}
%\end{frame}

\begin{frame}[t]{Unsupervised grammar induction}
There has been significant research into monolingual grammar induction:
\vspace{0.1in}
\alert{Constituent context is a prime indicator of constituency.}
\begin{unpacked_itemize}
\item Alexander Clark. Unsupervised induction of stochastic context-free grammars using distributional clustering, 2001
\item Dan Klein and Chris Manning. A Generative Constituent-Context Model for Improved Grammar Induction, 2002
\end{unpacked_itemize}
\vspace{0.1in}
\alert{We can formalise this notion in algebraic structures}
\begin{itemize}
\item Alexander Clark. A learnable representation for syntax using residuated lattices, 2009
\end{itemize}
\vspace{0.1in}
Deep connections to unsupervised word sense disambiguation, thesaurus extraction etc.
\end{frame}

%\begin{frame}[t]{Monolingual grammar induction}
%Induce bracketing phrase-structure grammars:
%  \includegraphics[scale=1]{klein_ccm.pdf} 
%
%\vspace{2ex}
%And dependency trees: \\
%  \includegraphics[scale=1]{klein_dependency.pdf}
%
%\vspace{2ex}
%Informed by constituent context: surrounding words are a good indicator of substitutability
%\end{frame}


\begin{frame}[t]{SCFG Grammar Induction}
%\vspace{1.0cm}
\begin{exampleblock}{Distributional Hypothesis}
\begin{quote}
\emph{Words that occur in the same contexts tend to have similar meanings}
\end{quote}
\hfill (Zellig Harris, 1954)
\end{exampleblock}

\vspace{3ex}

We will leverage this in a translation setting:
\begin{itemize}
    \item Use the contexts to \alert{cluster} translation units into groups
    \item Units in the same group expected to be semantically and syntactically similar
    \item Then use these cluster labels to guide translation
    \begin{itemize}
        \item lexical selection: translating ambiguous source word/s
        \item reordering: consistent syntactic patterns of reordering
    \end{itemize}
\end{itemize}
\end{frame}

\begin{frame}[t]{Monolingual Example}
Task: cluster words into their parts-of-speech. \\

\vspace{1ex}
Illustrate by starting with the word `deal' (noun or verb):

\only<1>{\includegraphics[width=\columnwidth]{deal_first.pdf} \\ Step 1: Find contexts for `deal'}
\only<2->{\includegraphics[width=\columnwidth]{deal.pdf} \\ Step 2: Find other words which occur in these contexts}
%\only<3>{\includegraphics[width=\columnwidth]{deal_more.pdf} \\ \ldots continue to expand}

\only<3>{
\vspace{1ex}
Notice that the instances of deal can be split into two connected sub-graphs:
\begin{itemize}
    \item noun: the left two contexts ``a \ldots with'' and ``a \ldots that''
    \item verb: the right two contexts ``to \ldots with'' and ``not \ldots with''
    \item neighbouring words of these contexts share the same PoS
\end{itemize}
}

\end{frame}

%\begin{frame}[t]{More Formally}
%
%Construct a bipartite graph
%\begin{itemize}
%    \item Nodes on the top layer denote word types (bilingual phrase pairs)
%    \item Nodes on the bottom layer denote context types (monlingual/bilingual words)
%    \item Edges connect words and their contexts
%\end{itemize}
%
%\includegraphics[width=\columnwidth]{bipartite.pdf}
%
%\end{frame}

\begin{frame}[t]{Clustering}

Task is to cluster the graph into sub-graphs. Nodes in the sub-graphs should be
\begin{itemize}
\item strongly connected to one another
\item weakly connected to nodes outside the sub-graph
\item could formulate as either \emph{hard} or \emph{soft} clustering
\end{itemize}
Choose \alert{soft clustering} to allow for syntactic and semantic ambiguity

\centering
\includegraphics[width=0.7\columnwidth]{bipartite_lda.pdf}

\end{frame}

\begin{frame}[t]{Constituency and context}
\vspace{0.25in}
\begin{center}
\only<1>{
  \includegraphics[scale=0.5]{WantTo_Veux_context.pdf}
  \includegraphics[scale=0.5]{WantTo_Veux_context2.pdf}
}
\only<2>{
  \includegraphics[scale=0.5]{WantTo_Veux_context_split.pdf}
  \includegraphics[scale=0.5]{WantTo_Veux_context2_split.pdf}
}
\only<3>{
  \includegraphics[scale=0.5]{WantTo_Veux_context_split_mono.pdf}
  \includegraphics[scale=0.5]{WantTo_Veux_context2_split_mono.pdf}
}
\end{center}
\vspace{0.1in}
%\only<1>{
%  There has been significant research into monolingual grammar induction:
%  \vspace{0.1in}
%  \begin{unpacked_itemize}
%  \item Alexander Clark. Unsupervised induction of stochastic context-free grammars using distributional clustering, 2001
%  \item Dan Klein and Chris Manning. A Generative Constituent-Context Model for Improved Grammar Induction, 2002
%  \end{unpacked_itemize}
%  \alert{Constituent context is a prime indicator of constituency.}
%}
%\only<1>{
\begin{unpacked_itemize}
\item Design and apply large scale scale clustering and topic modelling algorithms (LDA, HDPs, HPYPs etc), 
\item identify sets of frequent contexts that distinguish synchronous constituent properties.
\item Motivated by successful models of monolingual grammar induction,
\item deep connections to unsupervised word sense disambiguation, thesaurus extraction etc.
\end{unpacked_itemize}
%}
\end{frame}

\begin{frame}[t]{Latent Dirichlet Allocation (LDA)}

LDA is a generative model which treats documents as bags of words
\begin{itemize}
    \item each word is assign a \alert{topic} (cluster tag)
    \item words are generated from a topic-specific multinomial
    \item topics are \alert{tied} across a document using a Dirichlet prior
    \item $\alpha < 1$ biases towards \alert{sparse} distributions, i.e., topic reuse
    \item inferred $\theta_d$ describes a document and $\phi_t$ describes a topic
\end{itemize}

\vspace{-3ex}
\includegraphics[scale=0.55]{lda.pdf}

\end{frame}

\begin{frame}[t]{LDA over Contexts}

Generative story:
\begin{itemize}
    \item for each word type $w$
    \item for each of the $L$ contexts
    \item first we draw a topic $t$, then generate the context $\vec{c}$ given the topic
    \item the Dirichlet prior ties the topics for each $w$
    \item we're primarily interested in the learnt $\theta$ values
\end{itemize}

\includegraphics[scale=0.4]{context_lda.pdf}

\end{frame}

\begin{frame}[t]{Scalable grammar extraction with MapReduce}
\begin{itemize}
\item Divide and conquer approach to...counting
\begin{itemize}
\item map function $\mathcal{M}(x) \rightarrow \langle k_1, v_1 \rangle, \langle k_2, v_2 \rangle, \ldots$
\item write a reduce function $\mathcal{R}(k_i : v_7, v_{13} , \ldots) \rightarrow \langle k_i, \overline{v} \rangle$
\end{itemize}
\end{itemize}
\begin{center}
  \includegraphics[scale=0.4]{mroutline.pdf}
\end{center}
\end{frame}
\begin{frame}[t]{Scalable grammar extraction with MapReduce : mapper}
\begin{center}
  \includegraphics[scale=0.4]{mapper.pdf}
\end{center}
\end{frame}

\begin{frame}[t]{Scalable grammar extraction with MapReduce : reducer}
\begin{center}
  \includegraphics[scale=0.4]{reducer.pdf}
\end{center}
\end{frame}

\begin{frame}[t]{Scalable grammar extraction with MapReduce : Hadoop}
\begin{center}
  \includegraphics[scale=0.4]{hadoop-extract.pdf}
\end{center}
\end{frame}

\begin{frame}[t]{Scalable grammar extraction with MapReduce : Hadoop}
\begin{center}
  \includegraphics[scale=0.4]{hadoop-extract-arrows.pdf}
\end{center}
\end{frame}


%\begin{frame}[t]{Discriminative training}
%\begin{unpacked_itemize}
%\item MIRA
%\item Expected loss minimisation.
%\end{unpacked_itemize}
%\end{frame}


\begin{frame}[t]{Language pairs (small)}
\begin{itemize}
\item BTEC Chinese-English:
  \begin{itemize}
  \item 44k sentence pairs, short sentences
  \item Widely reported `prototyping' corpus
  \item Hiero baseline score: 52.4 (16 references)
  \item Prospects: BTEC always gives you good results
  \end{itemize}
\item NIST Urdu-English:
  \begin{itemize}
  \item 50k sentence pairs
  \item Hiero baseline score: MT05 - 23.7 (4 references)
  \item Major challenges: major long-range reordering, SOV word order
  \item Prospects: small data, previous gains with supervised syntax
  \end{itemize}
\end{itemize}
\end{frame}

\begin{frame}[t]{Language pairs (large)}
\begin{itemize}
\item NIST Chinese-English:
  \begin{itemize}
  \item 1.7M sentence pairs, Standard NIST test sets
  \item Hiero baseline score: MT05 - 33.9 (4 references)
  \item Major challenges: large data, mid-range reordering, lexical ambiguity
  \item Prospects: supervised syntax gains reported
  \end{itemize}
\item NIST Arabic-English:
  \begin{itemize}
  \item 900k sentence pairs
  \item Hiero baseline score: MT05 - 48.9 (4 references)
  \item Major challenges: strong baseline, local reordering, VSO word order
  \item Prospects: difficult
  \end{itemize}
\item Europarl Dutch-French:
  \begin{itemize}
  \item 1.5M sentence pairs, standard Europarl test sets
  \item Hiero baseline score: Europarl 2008 - 26.3 (1 reference)
  \item Major challenges: V2 / V-final word order, many non-literal translations
  \item Prospects: ???
  \end{itemize}
\end{itemize}
\end{frame}

%\begin{frame}[t]{Draft Schedule}
%\begin{itemize}
%\item Pre-workshop:
%  \begin{itemize}
%  \item Collect existing open-source tools for synchronous grammar induction,
%  \item Collect corpora across a range of translations conditions: small, large, low-density languages etc.
%  \item Implement phrase and context extraction algorithms.
%  \item Design the integration of various existing approaches into the decoders.
%  \end{itemize}
%\item Week 1:
%  \begin{itemize}
%  \item Optimise and reconfigure decoders to handle labelled synchronous grammars,
%  \item Perform a empirical study of synchronous constituency models.
%  \end{itemize}
%\end{itemize}
%\end{frame}

%\begin{frame}[t]{Draft Schedule}
%\begin{itemize}
%\item Week 2-3:
%  \begin{itemize}
%  \item Continue optimising decoder to handle labelled synchronous grammars,
%  \item Implement unsupervised label induction algorithms, initially inducing a single label per-phrase.
%  \item Extend to ''topic"-modelling style representation where a phrase may have multiple labellings.
%  \item Perform experimental comparison of existing synchronous grammar translation models.
%  \end{itemize}
%\item Week 3-6:
%  \begin{itemize}
%  \item Perform experimental comparison of unsupervised synchronous grammar translation models.
%  \item Extend the evaluation to small/big data sets, hi-density vs. low-density language pairs.
%  \item Create ``semi-supervised'' models combining knowledge from treebank parser into the unsupervised algorithms.
%  \item Wrap-up and write final report.
%  \end{itemize}
%\end{itemize}
%\end{frame}


\begin{frame}[t]{Pre-workshop experiments}
\vspace{0.25in}
We have implemented a baseline constituent modelling and distrbuted grammar extraction pipeline. Initial results on the small BTEC corpora:

\vspace{0.25in}
\begin{exampleblock}
\footnotesize
\centering
\begin{tabular}{lcccccc}
\toprule
Categories & \small 1-gram & \small 2-grams & \small 3-grams & \small 4-grams & \small BP  &  BLEU  \\
\midrule                                                                                            
1          & \small 84.7 & \small 62.0    & \small 47.2    & \small 36.4    & \small 0.969 &  \textcolor{blue}{53.10} \\
10         & \small 84.0 & \small 60.9    & \small 46.4    & \small 35.9    & \small 0.979 &  \textcolor{red}{52.88} \\
25         & \small 84.4 & \small 61.8    & \small 47.6    & \small 36.7    & \small 0.973 &  \textcolor{blue}{53.47} \\
50         & \small 84.8 & \small 61.2    & \small 46.6    & \small 36.2    & \small 0.971 &  \textcolor{red}{52.83} \\
100        & \small 83.5 & \small 60.1    & \small 45.7    & \small 35.3    & \small 0.972 &  \textcolor{red}{51.86} \\
\bottomrule
\end{tabular}
\end{exampleblock}
\end{frame}


%{\centering
%A unique opportunity to bring together researchers operating at the coal face of SMT development with leading theoreticians in the field of formal grammar induction.
%}
%\begin{unpacked_itemize}
%\item Understand the relationship between constituent labels and performance in SMT,
%\item Compare monolingual and bilingual induced grammars against parser output in terms of translation quality,
%\item Produce a large scale implementation of the label induction algorithms,
%\end{unpacked_itemize}
%\begin{unpacked_itemize}
%\item \alert{Learn language-pair dependent structure that produces translation performance gains across all language pairs,}
%\item \alert{Initiate a research program that redirects the SMT research community back to language neutral unsupervised systems.}
%\end{unpacked_itemize}


\begin{frame}[t]{Summary}
\begin{itemize}
\item Scientific Merit:
  \begin{itemize}
  \item A systematic comparison of existing syntactive approaches to SMT.
  \item An empirical study of how constituency is useful in SMT.
  \item An evaluation of existing theories of grammar induction in a practical application (end-to-end evaluation).
  \end{itemize}
\item Potential Impact:
  \begin{itemize}
  \item Better MT systems, for more languages, across a range of domains.
  \item More accessible high performance translation models for researchers. % all over the world.
  \end{itemize}
\item Feasibility:
  \begin{itemize}
  \item A great team with a wide range of both theoretical and practical experience.
  %\item Incremental plan without any deal breaking dependencies.
  \item Solid preparation.
  \end{itemize}
\item Novelty:
  \begin{itemize}
  \item First attempt at large scale unsupervised synchronous grammar induction.
%  \item First study seeking to compare and understand the impact of synchronous structure on translation performance. 
  \end{itemize}
\end{itemize}
\end{frame}


\end{document}