1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
#include "strmap.h"
#include <vector>
#include <string>
#include <cstdint>
#ifndef HAVE_OLD_CPP
# include <unordered_map>
#else
# include <tr1/unordered_map>
namespace std { using std::tr1::unordered_map; }
#endif
using namespace std;
#undef HAVE_64_BITS
#if INTPTR_MAX == INT32_MAX
# define HAVE_64_BITS 0
#elif INTPTR_MAX >= INT64_MAX
# define HAVE_64_BITS 1
#else
# error "couldn't tell if HAVE_64_BITS from INTPTR_MAX INT32_MAX INT64_MAX"
#endif
typedef uintptr_t MurmurInt;
// MurmurHash2, by Austin Appleby
static const uint32_t DEFAULT_SEED=2654435769U;
#if HAVE_64_BITS
//MurmurInt MurmurHash(void const *key, int len, uint32_t seed=DEFAULT_SEED);
inline uint64_t MurmurHash64( const void * key, int len, unsigned int seed=DEFAULT_SEED )
{
const uint64_t m = 0xc6a4a7935bd1e995ULL;
const int r = 47;
uint64_t h = seed ^ (len * m);
const uint64_t * data = (const uint64_t *)key;
const uint64_t * end = data + (len/8);
while(data != end)
{
uint64_t k = *data++;
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
}
const unsigned char * data2 = (const unsigned char*)data;
switch(len & 7)
{
case 7: h ^= uint64_t(data2[6]) << 48;
case 6: h ^= uint64_t(data2[5]) << 40;
case 5: h ^= uint64_t(data2[4]) << 32;
case 4: h ^= uint64_t(data2[3]) << 24;
case 3: h ^= uint64_t(data2[2]) << 16;
case 2: h ^= uint64_t(data2[1]) << 8;
case 1: h ^= uint64_t(data2[0]);
h *= m;
};
h ^= h >> r;
h *= m;
h ^= h >> r;
return h;
}
inline uint32_t MurmurHash32(void const *key, int len, uint32_t seed=DEFAULT_SEED)
{
return (uint32_t) MurmurHash64(key,len,seed);
}
inline MurmurInt MurmurHash(void const *key, int len, uint32_t seed=DEFAULT_SEED)
{
return MurmurHash64(key,len,seed);
}
#else
// 32-bit
// Note - This code makes a few assumptions about how your machine behaves -
// 1. We can read a 4-byte value from any address without crashing
// 2. sizeof(int) == 4
inline uint32_t MurmurHash32 ( const void * key, int len, uint32_t seed=DEFAULT_SEED)
{
// 'm' and 'r' are mixing constants generated offline.
// They're not really 'magic', they just happen to work well.
const uint32_t m = 0x5bd1e995;
const int r = 24;
// Initialize the hash to a 'random' value
uint32_t h = seed ^ len;
// Mix 4 bytes at a time into the hash
const unsigned char * data = (const unsigned char *)key;
while(len >= 4)
{
uint32_t k = *(uint32_t *)data;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
// Handle the last few bytes of the input array
switch(len)
{
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0];
h *= m;
};
// Do a few final mixes of the hash to ensure the last few
// bytes are well-incorporated.
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
inline MurmurInt MurmurHash ( const void * key, int len, uint32_t seed=DEFAULT_SEED) {
return MurmurHash32(key,len,seed);
}
// 64-bit hash for 32-bit platforms
inline uint64_t MurmurHash64 ( const void * key, int len, uint32_t seed=DEFAULT_SEED)
{
const uint32_t m = 0x5bd1e995;
const int r = 24;
uint32_t h1 = seed ^ len;
uint32_t h2 = 0;
const uint32_t * data = (const uint32_t *)key;
while(len >= 8)
{
uint32_t k1 = *data++;
k1 *= m; k1 ^= k1 >> r; k1 *= m;
h1 *= m; h1 ^= k1;
len -= 4;
uint32_t k2 = *data++;
k2 *= m; k2 ^= k2 >> r; k2 *= m;
h2 *= m; h2 ^= k2;
len -= 4;
}
if(len >= 4)
{
uint32_t k1 = *data++;
k1 *= m; k1 ^= k1 >> r; k1 *= m;
h1 *= m; h1 ^= k1;
len -= 4;
}
switch(len)
{
case 3: h2 ^= ((unsigned char*)data)[2] << 16;
case 2: h2 ^= ((unsigned char*)data)[1] << 8;
case 1: h2 ^= ((unsigned char*)data)[0];
h2 *= m;
};
h1 ^= h2 >> 18; h1 *= m;
h2 ^= h1 >> 22; h2 *= m;
h1 ^= h2 >> 17; h1 *= m;
h2 ^= h1 >> 19; h2 *= m;
uint64_t h = h1;
h = (h << 32) | h2;
return h;
}
#endif
//32bit
struct MurmurHasher {
size_t operator()(const string& s) const {
return MurmurHash(s.c_str(), s.size());
}
};
struct StrMap {
StrMap() { keys_.reserve(10000); keys_.push_back("<bad0>"); map_[keys_[0]] = 0; }
unordered_map<string, int, MurmurHasher> map_;
vector<string> keys_;
};
StrMap* stringmap_new() {
return new StrMap;
}
void stringmap_delete(StrMap *vocab) {
delete vocab;
}
int stringmap_index(StrMap *vocab, char *s) {
int& cell = vocab->map_[s];
if (!cell) {
cell = vocab->keys_.size();
vocab->keys_.push_back(s);
}
return cell;
}
char* stringmap_word(StrMap *vocab, int i) {
return const_cast<char *>(vocab->keys_[i].c_str());
}
|