1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
#include <sstream>
#include <iostream>
#include <fstream>
#include <vector>
#include <tr1/unordered_map>
#include <boost/functional/hash.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "sampler.h"
#include "filelib.h"
#include "stringlib.h"
#include "weights.h"
#include "scorer.h"
#include "inside_outside.h"
#include "hg_io.h"
#include "kbest.h"
#include "viterbi.h"
// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011)
using namespace std;
namespace po = boost::program_options;
struct ApproxVectorHasher {
static const size_t MASK = 0xFFFFFFFFull;
union UType {
double f; // leave as double
size_t i;
};
static inline double round(const double x) {
UType t;
t.f = x;
size_t r = t.i & MASK;
if ((r << 1) > MASK)
t.i += MASK - r + 1;
else
t.i &= (1ull - MASK);
return t.f;
}
size_t operator()(const SparseVector<weight_t>& x) const {
size_t h = 0x573915839;
for (SparseVector<weight_t>::const_iterator it = x.begin(); it != x.end(); ++it) {
UType t;
t.f = it->second;
if (t.f) {
size_t z = (t.i >> 32);
boost::hash_combine(h, it->first);
boost::hash_combine(h, z);
}
}
return h;
}
};
struct ApproxVectorEquals {
bool operator()(const SparseVector<weight_t>& a, const SparseVector<weight_t>& b) const {
SparseVector<weight_t>::const_iterator bit = b.begin();
for (SparseVector<weight_t>::const_iterator ait = a.begin(); ait != a.end(); ++ait) {
if (bit == b.end() ||
ait->first != bit->first ||
ApproxVectorHasher::round(ait->second) != ApproxVectorHasher::round(bit->second))
return false;
++bit;
}
if (bit != b.end()) return false;
return true;
}
};
boost::shared_ptr<MT19937> rng;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
("kbest_repository,K",po::value<string>()->default_value("./kbest"),"K-best list repository (directory)")
("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)")
("loss_function,l",po::value<string>()->default_value("ibm_bleu"), "Loss function being optimized")
("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract")
("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)")
("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)")
("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)")
("help,h", "Help");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
bool flag = false;
if (!conf->count("reference")) {
cerr << "Please specify one or more references using -r <REF.TXT>\n";
flag = true;
}
if (!conf->count("weights")) {
cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
flag = true;
}
if (flag || conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
struct HypInfo {
HypInfo() : g_(-100.0f) {}
HypInfo(const vector<WordID>& h, const SparseVector<weight_t>& feats) : hyp(h), g_(-100.0f), x(feats) {}
// lazy evaluation
double g(const SentenceScorer& scorer) const {
if (g_ == -100.0f)
g_ = scorer.ScoreCandidate(hyp)->ComputeScore();
return g_;
}
vector<WordID> hyp;
mutable float g_;
SparseVector<weight_t> x;
};
struct HypInfoCompare {
bool operator()(const HypInfo& a, const HypInfo& b) const {
ApproxVectorEquals comp;
return (a.hyp == b.hyp && comp(a.x,b.x));
}
};
struct HypInfoHasher {
size_t operator()(const HypInfo& x) const {
boost::hash<vector<WordID> > hhasher;
ApproxVectorHasher vhasher;
size_t ha = hhasher(x.hyp);
boost::hash_combine(ha, vhasher(x.x));
return ha;
}
};
void WriteKBest(const string& file, const vector<HypInfo>& kbest) {
WriteFile wf(file);
ostream& out = *wf.stream();
out.precision(10);
for (int i = 0; i < kbest.size(); ++i) {
out << TD::GetString(kbest[i].hyp) << endl;
out << kbest[i].x << endl;
}
}
void ParseSparseVector(string& line, size_t cur, SparseVector<weight_t>* out) {
SparseVector<weight_t>& x = *out;
size_t last_start = cur;
size_t last_comma = string::npos;
while(cur <= line.size()) {
if (line[cur] == ' ' || cur == line.size()) {
if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) {
cerr << "[ERROR] " << line << endl << " position = " << cur << endl;
exit(1);
}
const int fid = FD::Convert(line.substr(last_start, last_comma - last_start));
if (cur < line.size()) line[cur] = 0;
const double val = strtod(&line[last_comma + 1], NULL);
x.set_value(fid, val);
last_comma = string::npos;
last_start = cur+1;
} else {
if (line[cur] == '=')
last_comma = cur;
}
++cur;
}
}
void ReadKBest(const string& file, vector<HypInfo>* kbest) {
cerr << "Reading from " << file << endl;
ReadFile rf(file);
istream& in = *rf.stream();
string cand;
string feats;
while(getline(in, cand)) {
getline(in, feats);
assert(in);
kbest->push_back(HypInfo());
TD::ConvertSentence(cand, &kbest->back().hyp);
ParseSparseVector(feats, 0, &kbest->back().x);
}
cerr << " read " << kbest->size() << " hypotheses\n";
}
void Dedup(vector<HypInfo>* h) {
cerr << "Dedup in=" << h->size();
tr1::unordered_set<HypInfo, HypInfoHasher, HypInfoCompare> u;
while(h->size() > 0) {
u.insert(h->back());
h->pop_back();
}
tr1::unordered_set<HypInfo, HypInfoHasher, HypInfoCompare>::iterator it = u.begin();
while (it != u.end()) {
h->push_back(*it);
it = u.erase(it);
}
cerr << " out=" << h->size() << endl;
}
struct ThresholdAlpha {
explicit ThresholdAlpha(double t = 0.05) : threshold(t) {}
double operator()(double mag) const {
if (mag < threshold) return 0.0; else return 1.0;
}
const double threshold;
};
struct TrainingInstance {
TrainingInstance(const SparseVector<weight_t>& feats, bool positive, float diff) : x(feats), y(positive), gdiff(diff) {}
SparseVector<weight_t> x;
#undef DEBUGGING_PRO
#ifdef DEBUGGING_PRO
vector<WordID> a;
vector<WordID> b;
#endif
bool y;
float gdiff;
};
#ifdef DEBUGGING_PRO
ostream& operator<<(ostream& os, const TrainingInstance& d) {
return os << d.gdiff << " y=" << d.y << "\tA:" << TD::GetString(d.a) << "\n\tB: " << TD::GetString(d.b) << "\n\tX: " << d.x;
}
#endif
struct DiffOrder {
bool operator()(const TrainingInstance& a, const TrainingInstance& b) const {
return a.gdiff > b.gdiff;
}
};
void Sample(const unsigned gamma, const unsigned xi, const vector<HypInfo>& J_i, const SentenceScorer& scorer, const bool invert_score, vector<TrainingInstance>* pv) {
vector<TrainingInstance> v1, v2;
float avg_diff = 0;
for (unsigned i = 0; i < gamma; ++i) {
const size_t a = rng->inclusive(0, J_i.size() - 1)();
const size_t b = rng->inclusive(0, J_i.size() - 1)();
if (a == b) continue;
float ga = J_i[a].g(scorer);
float gb = J_i[b].g(scorer);
bool positive = gb < ga;
if (invert_score) positive = !positive;
const float gdiff = fabs(ga - gb);
if (!gdiff) continue;
avg_diff += gdiff;
SparseVector<weight_t> xdiff = (J_i[a].x - J_i[b].x).erase_zeros();
if (xdiff.empty()) {
cerr << "Empty diff:\n " << TD::GetString(J_i[a].hyp) << endl << "x=" << J_i[a].x << endl;
cerr << " " << TD::GetString(J_i[b].hyp) << endl << "x=" << J_i[b].x << endl;
continue;
}
v1.push_back(TrainingInstance(xdiff, positive, gdiff));
#ifdef DEBUGGING_PRO
v1.back().a = J_i[a].hyp;
v1.back().b = J_i[b].hyp;
cerr << "N: " << v1.back() << endl;
#endif
}
avg_diff /= v1.size();
for (unsigned i = 0; i < v1.size(); ++i) {
double p = 1.0 / (1.0 + exp(-avg_diff - v1[i].gdiff));
// cerr << "avg_diff=" << avg_diff << " gdiff=" << v1[i].gdiff << " p=" << p << endl;
if (rng->next() < p) v2.push_back(v1[i]);
}
vector<TrainingInstance>::iterator mid = v2.begin() + xi;
if (xi > v2.size()) mid = v2.end();
partial_sort(v2.begin(), mid, v2.end(), DiffOrder());
copy(v2.begin(), mid, back_inserter(*pv));
#ifdef DEBUGGING_PRO
if (v2.size() >= 5) {
for (int i =0; i < (mid - v2.begin()); ++i) {
cerr << v2[i] << endl;
}
cerr << pv->back() << endl;
}
#endif
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
if (conf.count("random_seed"))
rng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
else
rng.reset(new MT19937);
const string loss_function = conf["loss_function"].as<string>();
ScoreType type = ScoreTypeFromString(loss_function);
DocScorer ds(type, conf["reference"].as<vector<string> >(), conf["source"].as<string>());
cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl;
Hypergraph hg;
string last_file;
ReadFile in_read(conf["input"].as<string>());
istream &in=*in_read.stream();
const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
const unsigned gamma = conf["candidate_pairs"].as<unsigned>();
const unsigned xi = conf["best_pairs"].as<unsigned>();
string weightsf = conf["weights"].as<string>();
vector<weight_t> weights;
Weights::InitFromFile(weightsf, &weights);
string kbest_repo = conf["kbest_repository"].as<string>();
MkDirP(kbest_repo);
while(in) {
vector<TrainingInstance> v;
string line;
getline(in, line);
if (line.empty()) continue;
istringstream is(line);
int sent_id;
string file;
// path-to-file (JSON) sent_id
is >> file >> sent_id;
ReadFile rf(file);
ostringstream os;
vector<HypInfo> J_i;
os << kbest_repo << "/kbest." << sent_id << ".txt.gz";
const string kbest_file = os.str();
if (FileExists(kbest_file))
ReadKBest(kbest_file, &J_i);
HypergraphIO::ReadFromJSON(rf.stream(), &hg);
hg.Reweight(weights);
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size);
for (int i = 0; i < kbest_size; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest.LazyKthBest(hg.nodes_.size() - 1, i);
if (!d) break;
J_i.push_back(HypInfo(d->yield, d->feature_values));
}
Dedup(&J_i);
WriteKBest(kbest_file, J_i);
Sample(gamma, xi, J_i, *ds[sent_id], (type == TER), &v);
for (unsigned i = 0; i < v.size(); ++i) {
const TrainingInstance& vi = v[i];
cout << vi.y << "\t" << vi.x << endl;
cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl;
}
}
return 0;
}
|