1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
#include <iostream>
#include <vector>
#include <boost/program_options.hpp>
#include <boost/functional/hash.hpp>
#ifndef HAVE_OLD_CPP
# include <unordered_map>
#else
# include <tr1/unordered_map>
namespace std { using std::tr1::unordered_map; }
#endif
#include "prob.h"
#include "tdict.h"
#include "ns.h"
#include "filelib.h"
#include "stringlib.h"
using namespace std;
namespace po = boost::program_options;
void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
opts.add_options()
("input,i",po::value<vector<string> >(), "Files to read k-best lists from")
("scale,a",po::value<vector<double> >(), "Posterior scaling factors (per file)")
("offset,b",po::value<vector<double> >(), "Log posterior offsets (per file)")
("evaluation_metric,m",po::value<string>()->default_value("ibm_bleu"), "Evaluation metric")
("output_list,L", "Show reranked list as output")
("help,h", "Help");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
bool flag = false;
if (flag || conf->count("help")) {
cerr << dcmdline_options << endl;
exit(1);
}
}
struct ScoreComparer {
bool operator()(const pair<vector<WordID>, prob_t>& a, const pair<vector<WordID>, prob_t>& b) const {
return a.second > b.second;
}
};
struct LossComparer {
bool operator()(const pair<vector<WordID>, prob_t>& a, const pair<vector<WordID>, prob_t>& b) const {
return a.second < b.second;
}
};
bool ReadKBestList(const vector<double>& mbr_scale,
const vector<double>& mbr_offset,
const vector<ReadFile*>& rfs,
string* sent_id,
vector<pair<vector<WordID>, prob_t> >* list) {
static string cache_id;
pair<vector<WordID>, prob_t> tmp_pair;
static vector<pair<vector<WordID>, prob_t> > cache_pair(rfs.size());
list->clear();
string cur_id;
if (cache_pair[0].first.size() > 0) {
for (unsigned i = 0; i < cache_pair.size(); ++i)
list->push_back(cache_pair[i]);
cur_id = cache_id;
cache_pair.clear();
cache_pair.resize(rfs.size());
}
string line;
string tstr;
for (unsigned fi = 0; fi < rfs.size(); ++fi) {
istream& in = *rfs[fi]->stream();
while(getline(in, line)) {
size_t p1 = line.find(" ||| ");
if (p1 == string::npos) { cerr << "Bad format: " << line << endl; abort(); }
size_t p2 = line.find(" ||| ", p1 + 4);
if (p2 == string::npos) { cerr << "Bad format: " << line << endl; abort(); }
size_t p3 = line.rfind(" ||| ");
cache_id = line.substr(0, p1);
tstr = line.substr(p1 + 5, p2 - p1 - 5);
double val = strtod(line.substr(p3 + 5).c_str(), NULL) * mbr_scale[fi] + mbr_offset[fi];
TD::ConvertSentence(tstr, &tmp_pair.first);
tmp_pair.second.logeq(val);
if (cur_id.empty()) cur_id = cache_id;
if (cur_id == cache_id) {
list->push_back(tmp_pair);
*sent_id = cur_id;
tmp_pair.first.clear();
} else {
swap(cache_pair[fi], tmp_pair);
break;
}
}
}
sort(list->begin(), list->end(), ScoreComparer());
// for (unsigned i = 0; i < list->size(); ++i) {
// cerr << TD::GetString((*list)[i].first) << " ||| " << (*list)[i].second << endl;
//}
//cerr << endl;
return !list->empty();
}
int main(int argc, char** argv) {
po::variables_map conf;
InitCommandLine(argc, argv, &conf);
const string smetric = conf["evaluation_metric"].as<string>();
EvaluationMetric* metric = EvaluationMetric::Instance(smetric);
const bool is_loss = (UppercaseString(smetric) == "TER");
const bool output_list = conf.count("output_list") > 0;
vector<string> file;
if (conf.count("input") == 0)
file.push_back("-");
else
file = conf["input"].as<vector<string> >();
vector<double> mbr_scale;
if (conf.count("scale")) mbr_scale = conf["scale"].as<vector<double> >();
vector<double> mbr_offset;
if (conf.count("offset")) mbr_offset = conf["offset"].as<vector<double> >();
if (file.size() > mbr_scale.size()) mbr_scale.resize(file.size(), 1.0);
if (file.size() > mbr_offset.size()) mbr_offset.resize(file.size(), 0.0);
if (file.size() != mbr_scale.size()) {
cerr << file.size() << " files specified but " << mbr_scale.size() << " scale factors given!\n";
return 1;
}
if (file.size() != mbr_offset.size()) {
cerr << file.size() << " files specified but " << mbr_offset.size() << " scale factors given!\n";
return 1;
}
for (unsigned i = 0; i < file.size(); ++i)
cerr << "Kbest file " << (i+1) << ": " << file[i] << "\t(scale=" << mbr_scale[i] << ", offset=" << mbr_offset[i] << ")\n";
vector<pair<vector<WordID>, prob_t> > list;
vector<ReadFile*> rfs(file.size());
for (unsigned i = 0; i < file.size(); ++i)
rfs[i] = new ReadFile(file[i]);
string sent_id;
while(ReadKBestList(mbr_scale, mbr_offset, rfs, &sent_id, &list)) {
vector<prob_t> joints(list.size());
const prob_t max_score = list.front().second;
prob_t marginal = prob_t::Zero();
for (int i = 0 ; i < list.size(); ++i) {
const prob_t joint = list[i].second / max_score;
joints[i] = joint;
//cerr << "list[" << i << "] joint=" << log(joint) << endl;
marginal += joint;
}
int mbr_idx = -1;
vector<double> mbr_scores(output_list ? list.size() : 0);
double mbr_loss = numeric_limits<double>::max();
for (int i = 0 ; i < list.size(); ++i) {
const vector<vector<WordID> > refs(1, list[i].first);
boost::shared_ptr<SegmentEvaluator> segeval = metric->
CreateSegmentEvaluator(refs);
double wl_acc = 0;
for (int j = 0; j < list.size(); ++j) {
if (i != j) {
SufficientStats ss;
segeval->Evaluate(list[j].first, &ss);
double loss = 1.0 - metric->ComputeScore(ss);
if (is_loss) loss = 1.0 - loss;
double weighted_loss = loss * (joints[j] / marginal).as_float();
wl_acc += weighted_loss;
if ((!output_list) && wl_acc > mbr_loss) break;
}
}
if (output_list) mbr_scores[i] = wl_acc;
if (wl_acc < mbr_loss) {
mbr_loss = wl_acc;
mbr_idx = i;
}
}
// cerr << "ML translation: " << TD::GetString(list[0].first) << endl;
cerr << "MBR Best idx: " << mbr_idx << endl;
if (output_list) {
for (int i = 0; i < list.size(); ++i)
list[i].second.logeq(mbr_scores[i]);
sort(list.begin(), list.end(), LossComparer());
for (int i = 0; i < list.size(); ++i)
cout << sent_id << " ||| "
<< TD::GetString(list[i].first) << " ||| "
<< log(list[i].second) << endl;
} else {
cout << TD::GetString(list[mbr_idx].first) << endl;
}
}
return 0;
}
|